DeepID face recognition

2023-10-12 01:20
文章标签 recognition face deepid

本文主要是介绍DeepID face recognition,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

DeepID face recognition
最近开始看人脸识别方向的论文,对DeepID做了点总结并做成了PPT,其中包括DeepID和论文中涉及到的部分参考文献 算法介绍, 写到博客里供大家参考

参考文献

[1] Y. Sun, X. Wang, and X. Tang. Deepconvolutional networkcascadeforfacialpoint detection. In Proc. CVPR, 2013.

[2] D. Chen, X. Cao, L. Wang, F. Wen, and J.Sun. Bayesianfacerevisited: Ajoint formulation. In Proc. ECCV, 2012.

[3] Yi Sun, Xiaogang Wang, and XiaoouTang.DeepLearningFace Representation from Predicting 10,000 Classes.

Computer Vision and Pattern Recognition(CVPR), 2014.

[4] Chaochao Lu and Xiaoou Tang.Surpassing Human-LevelFace Verification Performance on LFW withGaussianFace.

[5] Yi Sun, Xiaogang Wang, and XiaoouTang.DeepLearningFace Representation by Joint Identification-Verification.

[6] Taiwan Colour & ImagingTechnology (TCIT) Brief method description:TCITcalculates the average position of thefacial area and judges the identical person or other person by face recognitionusing the facial area. Face Feature Positioning is applied to get the face datatemplate which is used to verify different faces.

[7] Yi Sun, Xiaogang Wang, and XiaoouTang. Deeply Learned Face Representations are Sparse, Selective, and Robust.arXiv:1412.1265, 2014, 2014.

[8] betaface.com Brief methoddescription:Wehaveused original LFW images, converted to greyscale, auto-aligned with ouralignment system and followed unrestricted protocol with labeled outside data:unrestricted protocol, labeled outside data results, LFW was not used fortraining or fine-tuning.

[9] Yi Sun, Ding Liang, Xiaogang Wang,and Xiaoou Tang. DeepID3: Face Recognition with Very Deep Neural Networks.arXiv:1502.00873, 2014.

[10] insky.so Brief methoddescription:Weusedoriginal LFW images to run the test procedure. Our system choose the rightimages according to the requirement auto and output the facial recognitionresults. And then, using the standard method to get the ROC curve. We have notdo training process using LFW images.

[11] Uni-Ubi Brief method description:Intest,we have used original LFW images, converted to greyscale, auto-aligned with ourface detector and alignment system and followed unrestricted protocol withlabeled outside data results, LFW was not used for training or fine-tuning.

[12] Florian Schroff, DmitryKalenichenko, and James Philbin. FaceNet: A Unified Embedding for Face  Recognition and Clustering. Computer Visionand Pattern Recognition (CVPR), 2015.

[13] Tencent-BestImage Brief methoddescription: Wefollowedthe Unrestricted, Labeled Outside Data protocol and build our system combiningour alignment system, deep CNN network with 12 convolution layers and JointBayesian. The whole system is trained on BestImage Celebrities Face (BCF)dataset, which contains about 20,000 individuals and 1 million face images. TheBCF dataset has no intersection with LFW. We divide BCF into two subdataset-BCF training set and BCF validation set. We train out deep CNN networkon BCF training set with 20 different face patches and combine features of eachpatch with PCA and Joint Bayesian learned on BCF validation set.

[14] Jingtuo Liu, Yafeng Deng, Tao Bai,Zhengping Wei, and Chang Huang; Baidu Targeting Ultimate Accuracy: FaceRecognition via Deep Embedding.

[15] AuthenMetric Brief methoddescription:

The system consists of a workflow of facedetection, face alignment, face feature extraction, and face matching, allusing our own algorithms. 25 face feature extraction models were trained usinga deep network with a training set of 500,000 face images of 10,000 individuals(no LFW subjects are included in the training set), each on a different facepatch. The face matching (similarity of two faces) module was trained using adeep metric learning network, where a face is represented as the concatenationof the 25 feature vectors. The training and test follow the Unrestricted,Labeled Outside Data protocol.

[16] X. Cao, D. Wipf, F. Wen, G. Duan, and J.Sun. A practicaltransferlearningalgorithmfor face verification. In Proc. ICCV, 2013.

[17]https://www.microsoft.com/en-us/research/wp-content/uploads/2012/01/JointBayesian_Suppl.pdf


这篇关于DeepID face recognition的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/192228

相关文章

Hugging Face Offline Mode 离线模式

Hugging Face Offline Mode 离线模式 1. 缓存管理2. 遥测日志 在使用 Hugging Face 的库时,缓存和遥测日志是两个重要的功能。本文将介绍如何管理缓存、启用离线模式以及如何关闭遥测日志。 1. 缓存管理 在使用 Hugging Face 模型时,权重和文件通常会从 Hub 下载并存储在默认的缓存目录中,这个目录通常位于用户的主目录。如果

人脸识别开源项目之-face_recognition

特性 从图片里找到人脸 定位图片中的所有人脸: import face_recognitionimage = face_recognition.load_image_file("your_file.jpg")face_locations = face_recognition.face_locations(image) 识别人脸关键点 识别人脸关键点,包括眼睛、鼻子、嘴和下巴。

Attribute Recognition简记1-Video-Based Pedestrian Attribute Recognition

创新点 1.行人属性库 2.行人属性识别的RNN框架及其池化策略 总结 先看看行人属性识别RNN结构: backbone是ResNet50,输出是每一帧的空间特征。这组特征被送到两个分支,分别是空间池化和时间建模。最后两种特征拼接。然后分类(FC)。 LSTM关注帧间变化。受cvpr《Recurrent Convolutional Network for Video-Based Person

Face Recognition简记1-A Performance Comparison of Loss Functions for Deep Face Recognition

创新点 1.各种loss的比较 总结 很久没见到这么专业的比较了,好高兴。 好像印证了一句话,没有免费的午餐。。。。 ArcFace 和 Angular Margin Softmax是性能比较突出的

Detection简记2-DAFE-FD: Density Aware Feature Enrichment for Face Detection

创新点 1.使用密度估计模型增强检测中的特征图 总结 整个流程还是很清晰的。 conv1-3的特征图经过密度估计模块由检测器D1进行检测。 D2-4分别是四个检测器。 FFM是特征融合模块,将不同层不同大小的特征融合。 FFM网络结构如下: 首先使用1X1的卷积减少两组特征的厚度到128,然后使用双线性插值统一两组特征图的尺寸,然后相加。类似于cvpr2017的SSH。 多尺度检测器的网

python出现远程服务器访问不了Hugging Face

OSError: We couldn’t connect to ‘https://huggingface.co’ to load this file, couldn’t find it in the cached files and it looks like stabilityai/sd-turbo is not the path to a directory containing a file

【读点论文】Scene Text Detection and Recognition: The Deep Learning Era

Scene Text Detection and Recognition: The Deep Learning Era Abstract 随着深度学习的兴起和发展,计算机视觉发生了巨大的变革和重塑。场景文本检测与识别作为计算机视觉领域的一个重要研究领域,不可避免地受到了这波革命的影响,从而进入了深度学习时代。近年来,该社区在思维方式、方法论和性能方面取得了长足的进步。本综述旨在总结和分析深度学

水下目标检测(低光照目标检测)方法-发表在Patter Recognition,代码已开源

这里写自定义目录标题 前言动机贡献Overview一些实验结果数据集主要实验结果实验结果展示 总结 前言 Hi,各位读者,好久不见!现在我已经从北大博士毕业,成为一名小青椒啦!工作还是需要宣传的。今天想分享我在水下目标检测的工作:《A gated cross-domain collaborative network for underwater object detection》

ICD-Face:用于人脸识别的类内紧致蒸馏算法

ICD-Face: Intra-class Compactness Distillation for Face Recognition 摘要         在ICD-Face中,首先提出计算教师和学生模型的相似度分布,然后引入特征库来构造足够多的高质量的正对。然后,估计教师和学生模型的概率分布,并引入相似性分布一致性(SDC)损失来提高学生模型的类内紧致性。 网络模型 ICD-Fac

步态识别论文Dynamic Aggregated Network for Gait Recognition(1)

摘要:步态识别在视频监控、犯罪现场侦查、社会安全等领域有着广泛的应用前景。然而,在实际场景中,步态识别往往受到多种外部因素的影响,如携带条件、穿着外套、视角多样等。近年来,各种基于深度学习的步态识别方法取得了可喜的成果,但它们倾向于使用固定权重的卷积网络提取显著特征之一,没有很好地考虑关键区域中步态特征之间的关系,忽略了完整运动模式的聚合。 在本文中,我们提出了一个新的观点,即实际的步态特征包括