深度学习_GAN_CycleGAN

2023-10-11 23:38
文章标签 学习 深度 cyclegan gan

本文主要是介绍深度学习_GAN_CycleGAN,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

非匹配数据的图像转换

Pix2Pix可以很好地处理匹配数据集的图像转换,但是在很多情况下匹配数据集是没有的或者说非常难收集到。在实际生活中,我们却可以很容易的拿到两个领域的大量非匹配数据。

下图展示了匹配数据和非匹配数据的区别:

在这里插入图片描述

CycleGAN就是解决非匹配数据集的图像转换的一种非常好用的网络。对于照片风格的转换,传统CNN网络是通过将某个画作中的风格叠加到原始图片上,如下图所示:

在这里插入图片描述

上面的方法仅仅将两张特定的图片之间进行转换,而CycleGAN的转换是存在于两个图像领域中的。

接下来我们欣赏一下一些CycleGAN转换的例子,在学习技术的同时也感受艺术的魅力。
以下,enjoy:

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

CycleGAN框架

CycleGAN的核心架构是由两个生成对抗网络的合作组成的。X与Y分别代表两组不同领域的图像数据,第一组生成对抗网络是生成器G(从X到Y的生成)与判别器 D Y D_Y DY,用于判断图像是否属于领域Y;第二组生成对抗网络是反向的生成器F(从Y到X的生成)与判别器 D X D_X DX,用于判断图像是否属于领域X。两个生成器G和F的目标都是尽可能生成对方领域中的图像以“骗过”各自对应的判别器 D Y D_Y DY D X D_X DX

CycleGAN逻辑结构

在这里插入图片描述

生成器结构

在这里插入图片描述

由编码层、转换层和解码层三部分组成。

判别器结构

在这里插入图片描述

CycleGAN目标函数

CycleGAN中引入了Cycle-consistency Loss。我们需要将两组生成对抗网络有机地结合起来。我们首先看下面第一张图,在生成器G通过条件数据x生成Y领域的数据 Y ^ \hat{Y} Y^后,我们需要将它通过对面的生成器F重新还原一个原来领域中的 x ^ \hat{x} x^,为了保证一致性,我们希望让x和 x ^ \hat{x} x^尽可能接近,而x和 x ^ \hat{x} x^之间的距离我们称之为Cycle-consistency Loss。

在这里插入图片描述

在这里插入图片描述

上面的两个图可以有下面的两个公式概括:

x → G ( x ) → F ( G ( x ) ) ≈ x x \to G(x)\to F(G(x))\approx x xG(x)F(G(x))x

y → F ( y ) → G ( F ( y ) ) ≈ y y \to F(y)\to G(F(y))\approx y yF(y)G(F(y))y

接下来我们需要设计两个对抗网络的对抗损失:

L G A N ( G , D Y , X , Y ) = E y ∼ p d a t a ( y ) [ log ⁡ D Y ( y ) ] + E x ∼ p d a t a ( x ) [ log ⁡ ( 1 − D Y ( G ( x ) ) ] L_{GAN}(G,D_Y,X,Y)= {\rm E}_{y\sim{p_{data}(y)}}[\log D_Y(y)] + {\rm E}_{x\sim{p_{data}}(x)}[\log (1 - D_Y(G(x))] LGAN(G,DY,X,Y)=Eypdata(y)[logDY(y)]+Expdata(x)[log(1DY(G(x))]

L G A N ( G , D X , X , Y ) = E x ∼ p d a t a ( x ) [ log ⁡ D X ( x ) ] + E y ∼ p d a t a ( y ) [ log ⁡ ( 1 − D X ( F ( y ) ) ] L_{GAN}(G,D_X,X,Y)= {\rm E}_{x\sim{p_{data}(x)}}[\log D_X(x)] + {\rm E}_{y\sim{p_{data}}(y)}[\log (1 - D_X(F(y))] LGAN(G,DX,X,Y)=Expdata(x)[logDX(x)]+Eypdata(y)[log(1DX(F(y))]

接下来我们定义Cycle-consistency Loss来确保生成器产生的数据能够与反向生成后的数据基本保持一致。

L c y c ( G , F ) = E x ∼ p d a t a x [ ∣ ∣ F ( G ( x ) ) − x ∣ ∣ 1 ] + E y ∼ p d a t a y [ ∣ ∣ G ( F ( x ) ) − y ∣ ∣ 1 ] L_{cyc}(G,F) = {\rm E}_{x\sim p_{data}{x}}[||F(G(x)) - x||_1] + {\rm E}_{y\sim p_{data}{y}}[||G(F(x)) - y||_1] Lcyc(G,F)=Expdatax[F(G(x))x1]+Eypdatay[G(F(x))y1]

最后我们可以得出完整的目标函数:

L ( G , F , D X , D Y ) = L G A N ( G , D Y , X , Y ) + L G A N ( F , D X , Y , X ) + λ L c y c ( G , F ) L(G,F,D_X,D_Y) = L_{GAN}(G,D_Y,X,Y) + L_{GAN}(F,D_X,Y,X) + \lambda L_{cyc}(G,F) L(G,F,DX,DY)=LGAN(G,DY,X,Y)+LGAN(F,DX,Y,X)+λLcyc(G,F)

与原始GAN一样,最终的优化函数依然是需要解决下面的这个极小极大值问题:

G ∗ , F ∗ = min ⁡ G , F max ⁡ D X , D Y L ( G , F , D X , D Y ) G^*,F^*=\mathop {\min }\limits_{G,F} \mathop {\max }\limits_{D_X,D_Y} L(G,F,D_X,D_Y) G,F=G,FminDX,DYmaxL(G,F,DX,DY)

实验

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

这篇关于深度学习_GAN_CycleGAN的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/191665

相关文章

SpringCloud动态配置注解@RefreshScope与@Component的深度解析

《SpringCloud动态配置注解@RefreshScope与@Component的深度解析》在现代微服务架构中,动态配置管理是一个关键需求,本文将为大家介绍SpringCloud中相关的注解@Re... 目录引言1. @RefreshScope 的作用与原理1.1 什么是 @RefreshScope1.

Python 中的异步与同步深度解析(实践记录)

《Python中的异步与同步深度解析(实践记录)》在Python编程世界里,异步和同步的概念是理解程序执行流程和性能优化的关键,这篇文章将带你深入了解它们的差异,以及阻塞和非阻塞的特性,同时通过实际... 目录python中的异步与同步:深度解析与实践异步与同步的定义异步同步阻塞与非阻塞的概念阻塞非阻塞同步

Redis中高并发读写性能的深度解析与优化

《Redis中高并发读写性能的深度解析与优化》Redis作为一款高性能的内存数据库,广泛应用于缓存、消息队列、实时统计等场景,本文将深入探讨Redis的读写并发能力,感兴趣的小伙伴可以了解下... 目录引言一、Redis 并发能力概述1.1 Redis 的读写性能1.2 影响 Redis 并发能力的因素二、

最新Spring Security实战教程之表单登录定制到处理逻辑的深度改造(最新推荐)

《最新SpringSecurity实战教程之表单登录定制到处理逻辑的深度改造(最新推荐)》本章节介绍了如何通过SpringSecurity实现从配置自定义登录页面、表单登录处理逻辑的配置,并简单模拟... 目录前言改造准备开始登录页改造自定义用户名密码登陆成功失败跳转问题自定义登出前后端分离适配方案结语前言

Java进阶学习之如何开启远程调式

《Java进阶学习之如何开启远程调式》Java开发中的远程调试是一项至关重要的技能,特别是在处理生产环境的问题或者协作开发时,:本文主要介绍Java进阶学习之如何开启远程调式的相关资料,需要的朋友... 目录概述Java远程调试的开启与底层原理开启Java远程调试底层原理JVM参数总结&nbsMbKKXJx

Redis 内存淘汰策略深度解析(最新推荐)

《Redis内存淘汰策略深度解析(最新推荐)》本文详细探讨了Redis的内存淘汰策略、实现原理、适用场景及最佳实践,介绍了八种内存淘汰策略,包括noeviction、LRU、LFU、TTL、Rand... 目录一、 内存淘汰策略概述二、内存淘汰策略详解2.1 ​noeviction(不淘汰)​2.2 ​LR

Python与DeepSeek的深度融合实战

《Python与DeepSeek的深度融合实战》Python作为最受欢迎的编程语言之一,以其简洁易读的语法、丰富的库和广泛的应用场景,成为了无数开发者的首选,而DeepSeek,作为人工智能领域的新星... 目录一、python与DeepSeek的结合优势二、模型训练1. 数据准备2. 模型架构与参数设置3

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

Go中sync.Once源码的深度讲解

《Go中sync.Once源码的深度讲解》sync.Once是Go语言标准库中的一个同步原语,用于确保某个操作只执行一次,本文将从源码出发为大家详细介绍一下sync.Once的具体使用,x希望对大家有... 目录概念简单示例源码解读总结概念sync.Once是Go语言标准库中的一个同步原语,用于确保某个操