深度学习_经典网络_Efficientnet论文及系列网络详解

2023-10-11 23:08

本文主要是介绍深度学习_经典网络_Efficientnet论文及系列网络详解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

EfficientNet论文链接

EfficientNet开源代码

Efficientnet是通过使用深度(depth)、宽度(width)、输入图片分辨率(resolution)共同调节技术搜索得来的模型。

EfficientNet结构

模型构建方法:

  1. 使用强化学习算法实现的MnasNet模型生成基线模型EfficientNet-B0。(MnasNet模型是Google 团队提出的一种资源约束的终端 CNN 模型的自动神经结构搜索方法。该方法使用强化学习的思路进行实现。)
  2. 采用复合缩放的方法,在预先设定的内存和计算量大小的限制下,对EfficientNet-B0模型的深度、宽度(特征图的通道数)、图像大小这三个维度同时进行缩放,这三个维度的缩放比例由网络搜索得到。最终输出了EfficientNet模型。

下图是一些参数调节示意图:

在这里插入图片描述

MBConv卷积块

EfficientNet模型的内部是通过多个MBConv卷积块实现的,每个MBConv卷积块的具体结构如下:

在这里插入图片描述
MBConv卷积块也使用了类似残差结构的结构,不同的是在短连接部分使用了SE层。另外使用了drop_connect方法来代替传统的drop方法。

DropConnect与Dropout不同的地方是在训练神经网络过程中,它不是对隐层节点的输出进行随机的丢弃,而是对隐层节点的输入进行随机的丢弃:

在这里插入图片描述

在深度神经网络中DropConnect与Dropout的作用都是防止模型产生过拟合的情况。相比之下DropConnect的效果会更好一些。

不同版本之间的区别

EfficientNet系列模型中从EfficientNet-B0到EfficientNet-L2版本,模型的精度越来越高,规模越来越大,同样,对内存的需求也会随之变大。

模型的规模主要是由宽度、深度、分辨率这三个维度的缩放参数决定的。这三个维度并不是相互独立的,对于输入的图片分辨率更高的情况,需要有更深的网络来获得更大的感受视野。同样的,对于更高分辨率的图片,需要有更多的通道来获取更精确的特征。在EfficientNet的论文中,也用公式介绍了三者之间的计算原则。

下面的表格展示了每个版本的缩放参数:

在这里插入图片描述

从上表中可以看到,随着模型缩放参数的逐渐变大,其dropout的丢弃率参数也在增大。这是因为模型中的参数越多,模型的拟合效果越强,也越容易产生过拟合。

模型性能

作者将EfficientNet系列网络与ImageNet 上其他现有的模型进行了比较。 一般来说,EfficientNet模型比现有的其他模型具有更高的精度和更高的效率,减少了参数大小和 FLOPS 数量级。 在高精度体系中, EfficientNet-B7在 imagenet 上的精度达到了最高水平的84.4% ,而在 CPU 使用方面比以前的 Gpipe 小8.4倍,快6.1倍。 与广泛使用的 ResNet-50相比,作者提出的 net-b4使用了类似的 FLOPS,同时将准确率从 ResNet-50的76.3% 提高到82.6% (+ 6.3%)。

Reference

技术解读EfficientNet系列模型——图片分类的领域的扛把子

这篇关于深度学习_经典网络_Efficientnet论文及系列网络详解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/191485

相关文章

C++使用栈实现括号匹配的代码详解

《C++使用栈实现括号匹配的代码详解》在编程中,括号匹配是一个常见问题,尤其是在处理数学表达式、编译器解析等任务时,栈是一种非常适合处理此类问题的数据结构,能够精确地管理括号的匹配问题,本文将通过C+... 目录引言问题描述代码讲解代码解析栈的状态表示测试总结引言在编程中,括号匹配是一个常见问题,尤其是在

Debezium 与 Apache Kafka 的集成方式步骤详解

《Debezium与ApacheKafka的集成方式步骤详解》本文详细介绍了如何将Debezium与ApacheKafka集成,包括集成概述、步骤、注意事项等,通过KafkaConnect,D... 目录一、集成概述二、集成步骤1. 准备 Kafka 环境2. 配置 Kafka Connect3. 安装 D

Java中ArrayList和LinkedList有什么区别举例详解

《Java中ArrayList和LinkedList有什么区别举例详解》:本文主要介绍Java中ArrayList和LinkedList区别的相关资料,包括数据结构特性、核心操作性能、内存与GC影... 目录一、底层数据结构二、核心操作性能对比三、内存与 GC 影响四、扩容机制五、线程安全与并发方案六、工程

Spring Cloud LoadBalancer 负载均衡详解

《SpringCloudLoadBalancer负载均衡详解》本文介绍了如何在SpringCloud中使用SpringCloudLoadBalancer实现客户端负载均衡,并详细讲解了轮询策略和... 目录1. 在 idea 上运行多个服务2. 问题引入3. 负载均衡4. Spring Cloud Load

Springboot中分析SQL性能的两种方式详解

《Springboot中分析SQL性能的两种方式详解》文章介绍了SQL性能分析的两种方式:MyBatis-Plus性能分析插件和p6spy框架,MyBatis-Plus插件配置简单,适用于开发和测试环... 目录SQL性能分析的两种方式:功能介绍实现方式:实现步骤:SQL性能分析的两种方式:功能介绍记录

在 Spring Boot 中使用 @Autowired和 @Bean注解的示例详解

《在SpringBoot中使用@Autowired和@Bean注解的示例详解》本文通过一个示例演示了如何在SpringBoot中使用@Autowired和@Bean注解进行依赖注入和Bean... 目录在 Spring Boot 中使用 @Autowired 和 @Bean 注解示例背景1. 定义 Stud

如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别详解

《如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别详解》:本文主要介绍如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别的相关资料,描述了如何使用海康威视设备网络SD... 目录前言开发流程问题和解决方案dll库加载不到的问题老旧版本sdk不兼容的问题关键实现流程总结前言作为

SQL 中多表查询的常见连接方式详解

《SQL中多表查询的常见连接方式详解》本文介绍SQL中多表查询的常见连接方式,包括内连接(INNERJOIN)、左连接(LEFTJOIN)、右连接(RIGHTJOIN)、全外连接(FULLOUTER... 目录一、连接类型图表(ASCII 形式)二、前置代码(创建示例表)三、连接方式代码示例1. 内连接(I

Go路由注册方法详解

《Go路由注册方法详解》Go语言中,http.NewServeMux()和http.HandleFunc()是两种不同的路由注册方式,前者创建独立的ServeMux实例,适合模块化和分层路由,灵活性高... 目录Go路由注册方法1. 路由注册的方式2. 路由器的独立性3. 灵活性4. 启动服务器的方式5.

Java中八大包装类举例详解(通俗易懂)

《Java中八大包装类举例详解(通俗易懂)》:本文主要介绍Java中的包装类,包括它们的作用、特点、用途以及如何进行装箱和拆箱,包装类还提供了许多实用方法,如转换、获取基本类型值、比较和类型检测,... 目录一、包装类(Wrapper Class)1、简要介绍2、包装类特点3、包装类用途二、装箱和拆箱1、装