判断两线段是否相交(快速排斥和跨立)

2023-10-11 19:50

本文主要是介绍判断两线段是否相交(快速排斥和跨立),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

背景知识:

判断两线段是否相交:  

我们分两步确定两条线段是否相交:  

(1)快速排斥试验    

    设以线段 P1P2 为对角线的矩形为R, 

    设以线段 Q1Q2 为对角线的矩形为T,

    如果R和T不相交,显然两线段不会相交。  

(2)跨立试验

  如果两线段相交,则两线段必然相互跨立对方。若P1P2跨立Q1Q2 ,则矢量 ( P1 - Q1 ) 和( P2 - Q1 )位于矢量( Q2 - Q1 ) 的两侧,即( P1 - Q1 ) × ( Q2 - Q1 ) * ( P2 - Q1 ) × ( Q2 - Q1 ) < 0。上式可改写成( P1 - Q1 ) × ( Q2 - Q1 ) * ( Q2 - Q1 ) × ( P2 - Q1 ) > 0。当 ( P1 - Q1 ) × ( Q2 - Q1 ) = 0 时,说明 ( P1 - Q1 ) 和 ( Q2 - Q1 )共线,但是因为已经通过快速排斥试验,所以 P1 一定在线段 Q1Q2上;同理,( Q2 - Q1 ) ×(P2 - Q1 ) = 0 说明 P2 一定在线段 Q1Q2上。所以判断P1P2跨立Q1Q2的依据是:( P1 - Q1 ) × ( Q2 - Q1 ) * ( Q2 - Q1 ) × ( P2 - Q1 ) >= 0。同理判断Q1Q2跨立P1P2的依据是:( Q1 - P1 ) × ( P2 - P1 ) * ( P2 - P1 ) × ( Q2 - P1 ) >= 0。具体情况如下图所示:

程序模版:

#include"stdio.h"
#include"string.h"
#include"math.h"
#include"stdlib.h"
#define M 101
#define inf 999999999
#define eps 1e-10
typedef struct node
{double x,y;
}P;
typedef struct line
{P s;P e;
}Line;
Line L[M];
double max(double x,double y)
{return x>y?x:y;
}
double min(double x,double y)
{return x<y?x:y;
}
int paichi(line a,line b)//快速排斥,若通过快速排斥进行跨立实验,否则无交点;
{if(max(a.e.x,a.s.x)>=min(b.s.x,b.e.x)&&max(b.s.x,b.e.x)>=min(a.s.x,a.e.x)&&max(a.s.y,a.e.y)>=min(b.s.y,b.e.y)&&max(b.s.y,b.e.y)>=min(a.s.y,a.e.y))return 1;elsereturn 0;
}
double cross(node a,node b,node c)//叉积
{double x1=b.x-a.x;double y1=b.y-a.y;double x2=c.x-a.x;double y2=c.y-a.y;return x1*y2-x2*y1;
}
int kuali(line a,line b)//跨立实验(通过相互跨立则可确定两线段相交返回1)
{if(cross(a.s,a.e,b.s)*cross(a.s,a.e,b.e)<=0&&cross(b.s,b.e,a.s)*cross(b.s,b.e,a.e)<=0)return 1;return 0;
}


相关题目:

hdu1086 判断线段相交

You can Solve a Geometry Problem too

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 6740    Accepted Submission(s): 3256


Problem Description
Many geometry(几何)problems were designed in the ACM/ICPC. And now, I also prepare a geometry problem for this final exam. According to the experience of many ACMers, geometry problems are always much trouble, but this problem is very easy, after all we are now attending an exam, not a contest :)
Give you N (1<=N<=100) segments(线段), please output the number of all intersections(交点). You should count repeatedly if M (M>2) segments intersect at the same point.

Note:
You can assume that two segments would not intersect at more than one point. 

Input
Input contains multiple test cases. Each test case contains a integer N (1=N<=100) in a line first, and then N lines follow. Each line describes one segment with four float values x1, y1, x2, y2 which are coordinates of the segment’s ending. 
A test case starting with 0 terminates the input and this test case is not to be processed.

Output
For each case, print the number of intersections, and one line one case.

Sample Input
  
2 0.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 3 0.00 0.00 1.00 1.00 0.00 1.00 1.00 0.000 0.00 0.00 1.00 0.00 0

Sample Output
  
1 3
分析:判断交点数:

程序:

#include"stdio.h"
#include"string.h"
#include"math.h"
#include"stdlib.h"
#define M 101
#define inf 999999999
#define eps 1e-10
typedef struct node
{double x,y;
}P;
typedef struct line
{P s;P e;
}Line;
Line L[M];
double max(double x,double y)
{return x>y?x:y;
}
double min(double x,double y)
{return x<y?x:y;
}
int paichi(line a,line b)//快速排斥,若通过快速排斥进行跨立实验,否则无交点;
{if(max(a.e.x,a.s.x)>=min(b.s.x,b.e.x)&&max(b.s.x,b.e.x)>=min(a.s.x,a.e.x)&&max(a.s.y,a.e.y)>=min(b.s.y,b.e.y)&&max(b.s.y,b.e.y)>=min(a.s.y,a.e.y))return 1;elsereturn 0;
}
double cross(node a,node b,node c)//叉积
{double x1=b.x-a.x;double y1=b.y-a.y;double x2=c.x-a.x;double y2=c.y-a.y;return x1*y2-x2*y1;
}
int kuali(line a,line b)//跨立实验(通过相互跨立则可确定两线段相交返回1)
{if(cross(a.s,a.e,b.s)*cross(a.s,a.e,b.e)<=0&&cross(b.s,b.e,a.s)*cross(b.s,b.e,a.e)<=0)return 1;return 0;
}
int main()
{int n,i,j;while(scanf("%d",&n),n){for(i=1;i<=n;i++)scanf("%lf%lf%lf%lf",&L[i].s.x,&L[i].s.y,&L[i].e.x,&L[i].e.y);int cnt=0;for(i=1;i<=n;i++){for(j=i+1;j<=n;j++){if(paichi(L[i],L[j])&&kuali(L[i],L[j]))cnt++;}}printf("%d\n",cnt);}
}
poj1127

题目:

Jack Straws
Time Limit: 1000MS Memory Limit: 10000K
Total Submissions: 3066 Accepted: 1376

Description

In the game of Jack Straws, a number of plastic or wooden "straws" are dumped on the table and players try to remove them one-by-one without disturbing the other straws. Here, we are only concerned with if various pairs of straws are connected by a path of touching straws. You will be given a list of the endpoints for some straws (as if they were dumped on a large piece of graph paper) and then will be asked if various pairs of straws are connected. Note that touching is connecting, but also two straws can be connected indirectly via other connected straws.

Input

Input consist multiple case,each case consists of multiple lines. The first line will be an integer n (1 < n < 13) giving the number of straws on the table. Each of the next n lines contain 4 positive integers,x1,y1,x2 and y2, giving the coordinates, (x1,y1),(x2,y2) of the endpoints of a single straw. All coordinates will be less than 100. (Note that the straws will be of varying lengths.) The first straw entered will be known as straw #1, the second as straw #2, and so on. The remaining lines of the current case(except for the final line) will each contain two positive integers, a and b, both between 1 and n, inclusive. You are to determine if straw a can be connected to straw b. When a = 0 = b, the current case is terminated. 

When n=0,the input is terminated. 

There will be no illegal input and there are no zero-length straws. 

Output

You should generate a line of output for each line containing a pair a and b, except the final line where a = 0 = b. The line should say simply "CONNECTED", if straw a is connected to straw b, or "NOT CONNECTED", if straw a is not connected to straw b. For our purposes, a straw is considered connected to itself.

Sample Input

7
1 6 3 3 
4 6 4 9 
4 5 6 7 
1 4 3 5 
3 5 5 5 
5 2 6 3 
5 4 7 2 
1 4 
1 6 
3 3 
6 7 
2 3 
1 3 
0 02
0 2 0 0
0 0 0 1
1 1
2 2
1 2
0 00

Sample Output

CONNECTED 
NOT CONNECTED 
CONNECTED 
CONNECTED 
NOT CONNECTED 
CONNECTED
CONNECTED
CONNECTED
CONNECTED
分析:判断线段相交+并查集

程序:

#include"stdio.h"
#include"string.h"
#include"math.h"
#include"stdlib.h"
#define M 101
#define inf 999999999
#define eps 1e-10
typedef struct node
{double x,y;
}P;
int f[M];
int finde(int x)
{if(x!=f[x])f[x]=finde(f[x]);return f[x];
}
void make(int a,int b)
{int x=finde(a);int y=finde(b);if(x!=y)f[x]=y;
}
double max(double x,double y)
{return x>y?x:y;
}
double min(double x,double y)
{return x<y?x:y;
}
typedef struct line
{P s;P e;
}Line;
Line L[M];
int paichi(line a,line b)
{if(max(a.e.x,a.s.x)>=min(b.s.x,b.e.x)&&max(b.s.x,b.e.x)>=min(a.s.x,a.e.x)&&max(a.s.y,a.e.y)>=min(b.s.y,b.e.y)&&max(b.s.y,b.e.y)>=min(a.s.y,a.e.y))return 1;elsereturn 0;
}
double cross(node a,node b,node c)
{double x1=b.x-a.x;double y1=b.y-a.y;double x2=c.x-a.x;double y2=c.y-a.y;return x1*y2-x2*y1;
}
int kuali(line a,line b)
{if(cross(a.s,a.e,b.s)*cross(a.s,a.e,b.e)<=0&&cross(b.s,b.e,a.s)*cross(b.s,b.e,a.e)<=0)return 1;return 0;
}
int main()
{int i,n,j;while(scanf("%d",&n),n){for(i=1;i<=n;i++)scanf("%lf%lf%lf%lf",&L[i].s.x,&L[i].s.y,&L[i].e.x,&L[i].e.y);for(i=1;i<=n;i++)f[i]=i;for(i=1;i<=n;i++){for(j=i+1;j<=n;j++){if(paichi(L[i],L[j])&&kuali(L[i],L[j]))make(i,j);}}int a,b;while(scanf("%d%d",&a,&b),a||b){if(finde(a)==finde(b))printf("CONNECTED\n");elseprintf("NOT CONNECTED\n");}}return 0;
}




这篇关于判断两线段是否相交(快速排斥和跨立)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/190438

相关文章

利用c++判断水仙花数并输出示例代码

《利用c++判断水仙花数并输出示例代码》水仙花数是指一个三位数,其各位数字的立方和恰好等于该数本身,:本文主要介绍利用c++判断水仙花数并输出的相关资料,文中通过代码介绍的非常详细,需要的朋友可以... 以下是使用C++实现的相同逻辑代码:#include <IOStream>#include <vec

检查 Nginx 是否启动的几种方法

《检查Nginx是否启动的几种方法》本文主要介绍了检查Nginx是否启动的几种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学... 目录1. 使用 systemctl 命令(推荐)2. 使用 service 命令3. 检查进程是否存在4

Python实现快速扫描目标主机的开放端口和服务

《Python实现快速扫描目标主机的开放端口和服务》这篇文章主要为大家详细介绍了如何使用Python编写一个功能强大的端口扫描器脚本,实现快速扫描目标主机的开放端口和服务,感兴趣的小伙伴可以了解下... 目录功能介绍场景应用1. 网络安全审计2. 系统管理维护3. 网络故障排查4. 合规性检查报错处理1.

MySQL快速复制一张表的四种核心方法(包括表结构和数据)

《MySQL快速复制一张表的四种核心方法(包括表结构和数据)》本文详细介绍了四种复制MySQL表(结构+数据)的方法,并对每种方法进行了对比分析,适用于不同场景和数据量的复制需求,特别是针对超大表(1... 目录一、mysql 复制表(结构+数据)的 4 种核心方法(面试结构化回答)方法 1:CREATE

SpringCloud Stream 快速入门实例教程

《SpringCloudStream快速入门实例教程》本文介绍了SpringCloudStream(SCS)组件在分布式系统中的作用,以及如何集成到SpringBoot项目中,通过SCS,可... 目录1.SCS 组件的出现的背景和作用2.SCS 集成srping Boot项目3.Yml 配置4.Sprin

SpringBoot集成iText快速生成PDF教程

《SpringBoot集成iText快速生成PDF教程》本文介绍了如何在SpringBoot项目中集成iText9.4.0生成PDF文档,包括新特性的介绍、环境准备、Service层实现、Contro... 目录SpringBoot集成iText 9.4.0生成PDF一、iText 9新特性与架构变革二、环

MySQL 批量插入的原理和实战方法(快速提升大数据导入效率)

《MySQL批量插入的原理和实战方法(快速提升大数据导入效率)》在日常开发中,我们经常需要将大量数据批量插入到MySQL数据库中,本文将介绍批量插入的原理、实现方法,并结合Python和PyMySQ... 目录一、批量插入的优势二、mysql 表的创建示例三、python 实现批量插入1. 安装 PyMyS

java中判断json key是否存在的几种方法

《java中判断jsonkey是否存在的几种方法》在使用Java处理JSON数据时,如何判断某一个key是否存在?本文就来介绍三种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的... 目http://www.chinasem.cn录第一种方法是使用 jsONObject 的 has 方法

使用EasyPoi快速导出Word文档功能的实现步骤

《使用EasyPoi快速导出Word文档功能的实现步骤》EasyPoi是一个基于ApachePOI的开源Java工具库,旨在简化Excel和Word文档的操作,本文将详细介绍如何使用EasyPoi快速... 目录一、准备工作1、引入依赖二、准备好一个word模版文件三、编写导出方法的工具类四、在Export

MySQL使用EXISTS检查记录是否存在的详细过程

《MySQL使用EXISTS检查记录是否存在的详细过程》EXISTS是SQL中用于检查子查询是否返回至少一条记录的运算符,它通常用于测试是否存在满足特定条件的记录,从而在主查询中进行相应操作,本文给大... 目录基本语法示例数据库和表结构1. 使用 EXISTS 在 SELECT 语句中2. 使用 EXIS