浅谈SSIM 损失函数计算

2023-10-11 15:59
文章标签 函数 计算 ssim 浅谈 损失

本文主要是介绍浅谈SSIM 损失函数计算,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

浅谈SSIM 损失函数计算

  • 前言
  • Structural Similarity
    • 亮度相似性
    • 对比度相似性
    • 结构相似度
    • SSIM 实现
  • 总结

前言

最近研究图像重建老是看到SSIM损失函数,但是去找了那篇论文《Image Quality Assessment: From Error Visibility to Structural Similarity》挺有意思的。

Structural Similarity

作者把两幅图 x, y 的相似性按三个维度进行比较:亮度(luminance)l(x,y),对比度(contrast)c(x,y),和结构(structure)s(x,y)。最终 x 和 y 的相似度为这三者的函数:

在这里插入图片描述
其中l(x,y),c(x,y).s(x,y)三个公式定量计算这三者的相似性,公式的设计遵循三个原则:
1.对称性:在这里插入图片描述
2.有界性 :在这里插入图片描述
3.极值唯一在这里插入图片描述, 当且仅当 x = y

亮度相似性

如果一幅图有 N 个像素点,每个像素点的像素值为 xi,那么该图像的平均亮度为:
在这里插入图片描述
则两幅图 x 和 y 的亮度相似度:
在这里插入图片描述

这里 C1是为了防止分母为零的情况,且:
在这里插入图片描述
其中 K1<<1是一个常数,具体代码中的取值为 0.01,L 是灰度的动态范围,由图像的数据类型决定,如果数据为 uint8 型,则 L=255。可以看出,公式 (4) 对称且始终小于等于1,当 x = y时为1。

对比度相似性

所谓对比度,就是图像明暗的变化剧烈程度,也就是像素值的标准差。其计算公式为:
在这里插入图片描述
对比度的相似度公式和公式 (4) 极为相似,只不过把均值换成了方差,定义为:
在这里插入图片描述
其中:
在这里插入图片描述
K2一般在代码中取 0.03。公式 (7) 也对称且小于等于1,当 x = y 时等号成立.

结构相似度

需要注意的是,对一幅图而言,其亮度和对比度都是标量,而其结构显然无法用一个标量表示,而是应该用该图所有像素组成的向量来表示。同时,研究结构相似度时,应该排除亮度和对比度的影响,即排除均值和标准差的影响。归根结底,作者研究的是归一化的两个向量:
在这里插入图片描述
之间的关系。根据均值与标准差的关系,可知这两个向量的模长均为 在这里插入图片描述因此它们的余弦相似度为:
在这里插入图片描述
上式中第二行括号内的部分为协方差公式:
在这里插入图片描述
同样为了防止分母为0,分子分母同时加 C3.
最终s(x,y)
在这里插入图片描述
令 c3=c2/2 , c(x,y)的分子和 s(x,y) 的分母可以约分,最终得到 SSIM 的公式:
在这里插入图片描述

SSIM 实现

然而,上面的 SSIM 不能用于一整幅图。因为在整幅图的跨度上,均值和方差往往变化剧烈;同时,图像上不同区块的失真程度也有可能不同,不能一概而论;此外类比人眼睛每次只能聚焦于一处的特点。作者采用 sliding window (这里可以看做卷积)以步长为 1 计算两幅图各个对应 sliding window 下的 patch 的 SSIM,然后取平均值作为两幅图整体的 SSIM,称为 Mean SSIM。简写为 MSSIM(注意和后续出现的 multi-scale SSIM:MS-SSIM 作区分)。
如果像素 Xi对应的高斯核权重为 Wi。那么加权均值,方差,协方差的公式为:
在这里插入图片描述
假如整幅图有 M 个 patch,那么 MSSIM 公式为:
在这里插入图片描述
在这里插入图片描述
在我们用pytorch实现部分
在这里插入图片描述
非加权平均包含在加权平均的情况之下,因此这里只推导加权的情况,若 wi 为权重,根据 (15):
在这里插入图片描述
想求图像的方差,只需做两次卷积,一次是对原图卷积,一次是对原图的平方卷积,然后用后者减去前者的平方即可。

根据 (16):
在这里插入图片描述
求两图的协方差,只需做三次卷积,第一次是对两图的乘积卷积,第二次和第三次分别对两图本身卷积,然后用第一次的卷积结果减去第二、三次卷积结果的乘积。

import torch
import torch.nn.functional as F
from torch.autograd import Variable
import numpy as np
from math import expdef gaussian(window_size, sigma):gauss = torch.Tensor([exp(-(x - window_size//2)**2/float(2*sigma**2)) for x in range(window_size)])return gauss/gauss.sum()def create_window(window_size, channel):_1D_window = gaussian(window_size, 1.5).unsqueeze(1)_2D_window = _1D_window.mm(_1D_window.t()).float().unsqueeze(0).unsqueeze(0)window = Variable(_2D_window.expand(channel, 1, window_size, window_size).contiguous())return windowdef _ssim(img1, img2, window, window_size, channel, size_average = True):mu1 = F.conv2d(img1, window, padding = window_size//2, groups = channel)mu2 = F.conv2d(img2, window, padding = window_size//2, groups = channel)mu1_sq = mu1.pow(2)mu2_sq = mu2.pow(2)mu1_mu2 = mu1*mu2sigma1_sq = F.conv2d(img1*img1, window, padding = window_size//2, groups = channel) - mu1_sqsigma2_sq = F.conv2d(img2*img2, window, padding = window_size//2, groups = channel) - mu2_sqsigma12 = F.conv2d(img1*img2, window, padding = window_size//2, groups = channel) - mu1_mu2C1 = 0.01**2C2 = 0.03**2ssim_map = ((2*mu1_mu2 + C1)*(2*sigma12 + C2))/((mu1_sq + mu2_sq + C1)*(sigma1_sq + sigma2_sq + C2))if size_average:return ssim_map.mean()else:return ssim_map.mean(1).mean(1).mean(1)class SSIM(torch.nn.Module):def __init__(self, window_size = 11, size_average = True):super(SSIM, self).__init__()self.window_size = window_sizeself.size_average = size_averageself.channel = 1self.window = create_window(window_size, self.channel)def forward(self, img1, img2):(_, channel, _, _) = img1.size()if channel == self.channel and self.window.data.type() == img1.data.type():window = self.windowelse:window = create_window(self.window_size, channel)if img1.is_cuda:window = window.cuda(img1.get_device())window = window.type_as(img1)self.window = windowself.channel = channelreturn _ssim(img1, img2, window, self.window_size, channel, self.size_average)def ssim(img1, img2, window_size = 11, size_average = True):(_, channel, _, _) = img1.size()window = create_window(window_size, channel)if img1.is_cuda:window = window.cuda(img1.get_device())window = window.type_as(img1)return _ssim(img1, img2, window, window_size, channel, size_average)

总结

下面的 GIF 对比了 MSE loss 和 SSIM 的优化效果,最左侧为原始图片,中间和右边两个图用随机噪声初始化,然后分别用 MSE loss 和 -SSIM 作为损失函数,通过反向传播以及梯度下降法,优化噪声,最终重建输入图像。:
在这里插入图片描述

这篇关于浅谈SSIM 损失函数计算的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/189176

相关文章

Python的time模块一些常用功能(各种与时间相关的函数)

《Python的time模块一些常用功能(各种与时间相关的函数)》Python的time模块提供了各种与时间相关的函数,包括获取当前时间、处理时间间隔、执行时间测量等,:本文主要介绍Python的... 目录1. 获取当前时间2. 时间格式化3. 延时执行4. 时间戳运算5. 计算代码执行时间6. 转换为指

Python正则表达式语法及re模块中的常用函数详解

《Python正则表达式语法及re模块中的常用函数详解》这篇文章主要给大家介绍了关于Python正则表达式语法及re模块中常用函数的相关资料,正则表达式是一种强大的字符串处理工具,可以用于匹配、切分、... 目录概念、作用和步骤语法re模块中的常用函数总结 概念、作用和步骤概念: 本身也是一个字符串,其中

shell编程之函数与数组的使用详解

《shell编程之函数与数组的使用详解》:本文主要介绍shell编程之函数与数组的使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录shell函数函数的用法俩个数求和系统资源监控并报警函数函数变量的作用范围函数的参数递归函数shell数组获取数组的长度读取某下的

MySQL高级查询之JOIN、子查询、窗口函数实际案例

《MySQL高级查询之JOIN、子查询、窗口函数实际案例》:本文主要介绍MySQL高级查询之JOIN、子查询、窗口函数实际案例的相关资料,JOIN用于多表关联查询,子查询用于数据筛选和过滤,窗口函... 目录前言1. JOIN(连接查询)1.1 内连接(INNER JOIN)1.2 左连接(LEFT JOI

MySQL中FIND_IN_SET函数与INSTR函数用法解析

《MySQL中FIND_IN_SET函数与INSTR函数用法解析》:本文主要介绍MySQL中FIND_IN_SET函数与INSTR函数用法解析,本文通过实例代码给大家介绍的非常详细,感兴趣的朋友一... 目录一、功能定义与语法1、FIND_IN_SET函数2、INSTR函数二、本质区别对比三、实际场景案例分

C++ Sort函数使用场景分析

《C++Sort函数使用场景分析》sort函数是algorithm库下的一个函数,sort函数是不稳定的,即大小相同的元素在排序后相对顺序可能发生改变,如果某些场景需要保持相同元素间的相对顺序,可使... 目录C++ Sort函数详解一、sort函数调用的两种方式二、sort函数使用场景三、sort函数排序

C语言函数递归实际应用举例详解

《C语言函数递归实际应用举例详解》程序调用自身的编程技巧称为递归,递归做为一种算法在程序设计语言中广泛应用,:本文主要介绍C语言函数递归实际应用举例的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录前言一、递归的概念与思想二、递归的限制条件 三、递归的实际应用举例(一)求 n 的阶乘(二)顺序打印

浅谈配置MMCV环境,解决报错,版本不匹配问题

《浅谈配置MMCV环境,解决报错,版本不匹配问题》:本文主要介绍浅谈配置MMCV环境,解决报错,版本不匹配问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录配置MMCV环境,解决报错,版本不匹配错误示例正确示例总结配置MMCV环境,解决报错,版本不匹配在col

C/C++错误信息处理的常见方法及函数

《C/C++错误信息处理的常见方法及函数》C/C++是两种广泛使用的编程语言,特别是在系统编程、嵌入式开发以及高性能计算领域,:本文主要介绍C/C++错误信息处理的常见方法及函数,文中通过代码介绍... 目录前言1. errno 和 perror()示例:2. strerror()示例:3. perror(

Kotlin 作用域函数apply、let、run、with、also使用指南

《Kotlin作用域函数apply、let、run、with、also使用指南》在Kotlin开发中,作用域函数(ScopeFunctions)是一组能让代码更简洁、更函数式的高阶函数,本文将... 目录一、引言:为什么需要作用域函数?二、作用域函China编程数详解1. apply:对象配置的 “流式构建器”最