本文主要是介绍OPTICS算法的C语言实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
在这个方法中,不像前面的相关的聚类的文章中产生数据集合的聚类结果,而是产生一个基于密度的表示数据的固有的聚类结构的一个增广的排序,除了应用到DBSCAN中的相关的概念(核心对象, 直接密度可达,密度可达,和密度相连),有增加了两个概念, 一个是核心距离:即使得一个object满足称为核心对象的最小的距离(即,在用户输入的ε和MinPtr的情况下成为核心对象的最小的距离,如果改对象不是在ε和MinPtr的情况下的核心对象,则核心距离为未定义的值, 需要注意的是,这两个参数的输入对于聚类的结果是没有太大的影响的, 也就是说,OPTICS算法对于输入不敏感), 第二个引入概念是可达距离,即一个对象到达另一个核心对象的欧几里得距离和核心对象的核心距离的最大值。之所以要引入这两个概念,是因为:改方法的核心思想是,要首先找到密度高的区域。而在程序的运行过程中使得可达距离逐渐的变小的过程就是达到这个目的的过程。
算法的描述如下:
代码实现如下
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<math.h>#define INITIAL_SIZE 5000
#define INCREASEMENT 500
#define UNDEFINE 50.0typedef struct Core_Object
{int objectID;int* directlyDensityReachable_ID;int size_DDR;int capacity;double reachabilityDistance;double coreDistance;int processed;
}Core_Object;Core_Object* core_object_set;
Core_Object* object_neighbor;typedef struct QueueNode
{int data;struct QueueNode* next;double reachabilityDistance;
}QueueNode;
typedef struct LinkQueue
{QueueNode* front;QueueNode* rear;
}LinkQueue;typedef struct Cluster_Order_Node
{int objectID;double core_distance;double reachability_distance;
}Cluster_Order_Node;
Cluster_Order_Node* cluster_ordering;double radius;
int MinPts;
char filename[200];
int data_size;
int data_dimension;
int core_object_size;
int cluster_order_counter = 1;double** dataBase;
double** distanceMatrix;void initial();
void readDataFromFile();
double calculateDistance_betweenTwoObject(int, int);
void calculateDistanceMatrix();
void createCoreOjectSet();
void createObjectNeighborSet();
void OPTICS();
void setCoreDistance(int);
int isProcessed(int);
void saveToClusterOrdering(int, int);
void update(int);
void ExpandClusterOrder(int);
void writeClusterOrdering2File();//queue
void initialQueue(LinkQueue*);
void insertQueue(LinkQueue*, int, double);
void deleteQueue(LinkQueue*, int*);
int isQueueEmpty(LinkQueue);
void printQueue(LinkQueue);
void decrease(LinkQueue*, int, double);
void testQueue();LinkQueue orderSeeds;
//queueint main(int argc, char* argv[])
{if( argc != 6 ){printf("This algorithm require four parameters""\n\tthe neighborhood distance""\n\tthe MinPts""\n\tthe filename contains data""\n\tthe size of data""\n\tthe dimension of data""\n");exit(0);}radius = atof(argv[1]);MinPts = atoi(argv[2]);strcat(filename, argv[3]);data_size = atoi(argv[4]);data_dimension = atoi(argv[5]);initial();readDataFromFile();calculateDistanceMatrix();createCoreOjectSet();createObjectNeighborSet();//testQueue();OPTICS();writeClusterOrdering2File();return 0;
}/** do some initialization work:* create the dynamic array @dataBase which be used to store the origin data* */
void initial()
{// initial dataBasedataBase = (double**)malloc(sizeof(double*) * (data_size + 1));if( !dataBase ){printf("initial: dataBase malloc error: 0\n");exit(0);}int i;for( i = 1; i <= data_size; i++ ){dataBase[i] = (double*)malloc(sizeof(double) * (data_dimension + 1));if( !dataBase[i] ){printf("initial: dataBase malloc error: %d\n", i);exit(0);}}// initial distance matrix distanceMatrix = (double**)malloc(sizeof(double*) * (data_size + 1));if( !distanceMatrix ){printf("initial: distance matrix malloc error: 0");exit(0);}for( i = 1; i <= data_size; i++ ){distanceMatrix[i] = (double*)malloc(sizeof(double) * (data_size + 1));if( !distanceMatrix[i] ){printf("initial: malloc distance matrix error: %d\n", i);exit(0);}}// initial cluster_orderingcluster_ordering = (Cluster_Order_Node*)malloc(sizeof(Cluster_Order_Node) * (data_size + 1));if( !cluster_ordering ){printf("initial: cluster_ordering malloc error");exit(0);}
}/** read original data from @filename to array @dataBase* */
void readDataFromFile()
{FILE* fread;if( NULL == (fread = fopen(filename, "r")) ){printf("open file(%s) error\n", filename);exit(0);}int i, j;for( i = 1; i <= data_size; i++ ){for( j = 1; j <= data_dimension; j++ ){if( 1 != fscanf(fread, "%lf ", &dataBase[i][j])){printf("dataBase fscanf error: (%d, %d)", i, j);exit(0);}}}
}/** calculate distance between two object* */
double calculateDistance_betweenTwoObject(int object_1, int object_2)
{double result = 0.0;int i;for( i = 1; i <= data_dimension; i++ ){result += pow(dataBase[object_1][i] - dataBase[object_2][i], 2);} return sqrt(result);
}/** calculate the distance matrix* */
void calculateDistanceMatrix()
{int i, j;for( i = 1; i <= data_size; i++ ){distanceMatrix[i][i] = 0.0;for( j = i + 1; j <= data_size; j++ ){distanceMatrix[i][j] = calculateDistance_betweenTwoObject(i, j);distanceMatrix[j][i] = distanceMatrix[i][j];if( distanceMatrix[i][j] <= radius ){distanceMatrix[i][0]++;distanceMatrix[j][0]++;}}}//statistic the number of core objectfor( i = 1; i <= data_size; i++ )if( distanceMatrix[i][0] >= MinPts - 1 )core_object_size++;
}/** * */
void createCoreOjectSet()
{core_object_set = (Core_Object*)malloc(sizeof(Core_Object) * (core_object_size + 1));if( !core_object_set ){printf("core_object_set malloc error!");exit(0);}int i, j;for( i = 1; i <= core_object_size; i++ ){core_object_set[i].directlyDensityReachable_ID = (int*)malloc(sizeof(int) * (INITIAL_SIZE + 1));if( !core_object_set[i].directlyDensityReachable_ID ){printf("core_object_set's directlyDensityReachable malloc error\n");exit(0);}core_object_set[i].capacity = INITIAL_SIZE;core_object_set[i].size_DDR = 0;}int counter_CO = 1; //counter_CoreObjectfor( i = 1; i <= data_size; i++ ){if( distanceMatrix[i][0] >= MinPts - 1 ){core_object_set[counter_CO].objectID = i;for( j = 1; j <= data_size; j++ ){if( distanceMatrix[i][j] <= radius && i != j ){core_object_set[counter_CO].size_DDR++;if( core_object_set[counter_CO].size_DDR > core_object_set[counter_CO].capacity ){core_object_set[counter_CO].directlyDensityReachable_ID = (int*)realloc(core_object_set[counter_CO].directlyDensityReachable_ID, sizeof(int) * (core_object_set[counter_CO].capacity + INCREASEMENT + 1));if( !core_object_set[counter_CO].directlyDensityReachable_ID ){printf("realloc is error: %d ", counter_CO);exit(0);}core_object_set[counter_CO].capacity += INCREASEMENT;}core_object_set[counter_CO].directlyDensityReachable_ID[core_object_set[counter_CO].size_DDR] = j;}}counter_CO++;}}
}/** * */
void createObjectNeighborSet()
{object_neighbor = (Core_Object*)malloc(sizeof(Core_Object) * (data_size + 1));if( !object_neighbor ){printf("object_neighbor malloc error!\n");exit(0);}int i, j;for( i = 1; i <= data_size; i++ ){object_neighbor[i].objectID = i;object_neighbor[i].size_DDR = 0;object_neighbor[i].capacity = INITIAL_SIZE;object_neighbor[i].directlyDensityReachable_ID = (int*)malloc(sizeof(int) * (INITIAL_SIZE + 1));object_neighbor[i].processed = 0;object_neighbor[i].coreDistance = UNDEFINE;object_neighbor[i].reachabilityDistance = UNDEFINE;}for( i = 1; i <= data_size; i++ ){for( j = 1; j <= data_size; j++ ){if( distanceMatrix[i][j] <= radius && i != j ){object_neighbor[i].size_DDR++;if( object_neighbor[i].size_DDR > object_neighbor[i].capacity ){object_neighbor[i].directlyDensityReachable_ID = (int*)realloc(object_neighbor[i].directlyDensityReachable_ID, sizeof(int) * (object_neighbor[i].capacity + INCREASEMENT + 1));if( !object_neighbor[i].directlyDensityReachable_ID ){printf("object_neighbor realloc error: %d\n", i);exit(0);}object_neighbor[i].capacity += INCREASEMENT;}object_neighbor[i].directlyDensityReachable_ID[object_neighbor[i].size_DDR] = j;}}}
}/********************************************************************************************************************************************************************************************************* OPTICS algorithm********************************************************************************************************************************************************************************************************/
void OPTICS()
{printf("\n\n");initialQueue(&orderSeeds);int i;for( i = 1; i <= data_size; i++ ){if( isProcessed(i) != 1 ){printf("\n\n--------------expandClusterOrder: %d------------------\n\n", i);ExpandClusterOrder(i);}}
}int isProcessed(int objectID)
{return object_neighbor[objectID].processed;
}void ExpandClusterOrder(int objectID)
{int currentObjectID;object_neighbor[objectID].processed = 1;object_neighbor[objectID].reachabilityDistance = UNDEFINE;setCoreDistance(objectID);saveToClusterOrdering(objectID, cluster_order_counter++);if( object_neighbor[objectID].coreDistance != UNDEFINE ){update(objectID);while( !isQueueEmpty(orderSeeds) ){deleteQueue(&orderSeeds, ¤tObjectID);object_neighbor[currentObjectID].processed = 1;setCoreDistance(currentObjectID);saveToClusterOrdering(currentObjectID, cluster_order_counter++);if( object_neighbor[currentObjectID].coreDistance != UNDEFINE ){update(currentObjectID);}}}
}void setCoreDistance(int objectID)
{double* increase;increase = (double*)malloc(sizeof(double) * (object_neighbor[objectID].size_DDR + 1));if( !increase ){printf("in function setCoreDistance malloc error\n");exit(0);}int i, j;for( i = 1; i <= object_neighbor[objectID].size_DDR; i++ ){increase[i] = distanceMatrix[objectID][object_neighbor[objectID].directlyDensityReachable_ID[i]];}int min_index;double min_value;for( i = 1; i <= object_neighbor[objectID].size_DDR; i++ ){min_index = i;min_value = increase[i];for( j = i + 1; j <= object_neighbor[objectID].size_DDR; j++ ){if( increase[j] < min_value ){min_index = j;min_value = increase[j];}}if( min_index != i ){increase[0] = increase[min_index];increase[min_index] = increase[i];increase[i] = increase[0];}}if( object_neighbor[objectID].size_DDR >= MinPts - 1 ){object_neighbor[objectID].coreDistance = increase[MinPts - 1];}else{object_neighbor[objectID].coreDistance = UNDEFINE;}
}void saveToClusterOrdering(int objectID, int counter)
{cluster_ordering[counter].objectID = objectID;cluster_ordering[counter].core_distance = object_neighbor[objectID].coreDistance;cluster_ordering[counter].reachability_distance = object_neighbor[objectID].reachabilityDistance;
}/*** */
void update(int centerObjectID)
{double new_reachabilityDistance = 0.0;int i;int objectID;for( i = 1; i <= object_neighbor[centerObjectID].size_DDR; i++ ){objectID = object_neighbor[centerObjectID].directlyDensityReachable_ID[i];if( object_neighbor[objectID].processed != 1 ){new_reachabilityDistance = object_neighbor[centerObjectID].coreDistance > distanceMatrix[centerObjectID][objectID] ? object_neighbor[centerObjectID].coreDistance : distanceMatrix[centerObjectID][objectID];if( object_neighbor[objectID].reachabilityDistance == UNDEFINE ){object_neighbor[objectID].reachabilityDistance = new_reachabilityDistance;insertQueue(&orderSeeds, object_neighbor[objectID].objectID, new_reachabilityDistance);}else{if( new_reachabilityDistance < object_neighbor[objectID].reachabilityDistance ){object_neighbor[objectID].reachabilityDistance = new_reachabilityDistance;decrease(&orderSeeds, objectID ,new_reachabilityDistance);}}}}
}/** write the @cluster_ordering* */
void writeClusterOrdering2File()
{int i;FILE* fwrite;if( NULL == (fwrite = fopen(".//OPTICS_ORDERING//cluster_ordering.data", "w"))){printf("open file(cluster_ordering.data) fail\n");exit(0);}for( i = 1; i <= data_size; i++ ){fprintf(fwrite, "%d\t%f\t%f\n", cluster_ordering[i].objectID, cluster_ordering[i].core_distance, cluster_ordering[i].reachability_distance);}fclose(fwrite);
}/** some operation about queue* */
void initialQueue(LinkQueue* L)
{L->front = (QueueNode*)malloc(sizeof(QueueNode));if( !L->front ){printf("queue initial malloc error\n");exit(0);}L->rear = L->front;L->rear->next = NULL;
}
void insertQueue(LinkQueue* L, int objectID, double distance)
{QueueNode* new = (QueueNode*)malloc(sizeof(QueueNode));if( !new ){printf("insert Queue malloc error");exit(0);}new->data = objectID;new->reachabilityDistance = distance;if( isQueueEmpty(*L) ){new->next = NULL;L->rear->next = new;L->rear = new;}else //non-empty{QueueNode* seek = L->front->next;QueueNode* later = L->front;while( seek != NULL && seek->reachabilityDistance < distance ){later = seek;seek = seek->next;}if( seek == NULL ){new->next = L->rear->next;L->rear->next = new;L->rear = new;}else{new->next = seek;later->next = new;}}
}
void decrease(LinkQueue* L, int objectID, double distance)
{QueueNode* seek = L->front->next;QueueNode* follower = L->front;while( seek->data != objectID ){follower = seek;seek = seek->next;}if( seek == L->rear ){follower->next = NULL;L->rear = follower;}else{follower->next = seek->next;}QueueNode* new = (QueueNode*)malloc(sizeof(QueueNode));new->data = objectID;new->reachabilityDistance = distance;seek = L->front->next;follower = L->front;//printf("c");if( isQueueEmpty(*L) == 1 ){L->front->next = new;L->rear = new;L->rear->next = NULL;//printf("d");}else{//printf("e");while( seek != NULL && seek->reachabilityDistance < distance ){follower = seek;seek = seek->next;}if( seek == NULL ){//printf("f");follower->next = new;new->next = NULL;L->rear = new;}else{//printf("g");new->next = seek;follower->next = new;}}
}
void deleteQueue(LinkQueue* L, int* objectID)
{if( isQueueEmpty(*L) ){printf("\tQueue is empty\n");exit(0);}QueueNode* f = L->front->next;*objectID = f->data;L->front->next = f->next;if( f == L->rear ){L->rear = L->front;}free(f);
}
int isQueueEmpty(LinkQueue L)
{return L.rear == L.front ? 1 : 0;
}
void printQueue(LinkQueue L)
{printf("\nqueue operation : print\n");if( isQueueEmpty(L) ){printf("\tQueue is empty\n");}else{L.front = L.front->next;while( L.front != L.rear ){printf("%d: %f\n", L.front->data, L.front->reachabilityDistance);L.front = L.front->next;}printf("%d: %f \n\n", L.front->data, L.front->reachabilityDistance);}
}
void testQueue()
{LinkQueue L;int x;initialQueue(&L);insertQueue(&L, 4, 1.254);insertQueue(&L, 2, 2.2564);insertQueue(&L, 6, 1.0254);insertQueue(&L, 1, 0.56);insertQueue(&L, 5, 4.15);insertQueue(&L, 3, 2.342);insertQueue(&L, 7, 2.0214);insertQueue(&L, 8, 0.254);printQueue(L);decrease(&L, 3, 0.50);printQueue(L);decrease(&L, 5, 4.00);printQueue(L);
}
程序对于几种二维数据集的聚类的情况, 左边的是原始的数据,右边是程序运行的结果的可视化的图,在程序的运行结果中,为在当前目录下的OPTICS_ORDERING文件夹下生成一个文件,文件中第一列为objectId, 第二列为object的核心距离,第三列为object的可达距离,正是使用该列的数据进行作图,得到以下的图片。
这篇关于OPTICS算法的C语言实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!