中医药领域的问题生成,阿里天池算法大赛Top1

2023-10-11 02:20

本文主要是介绍中医药领域的问题生成,阿里天池算法大赛Top1,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

fb544ecb8f2a265820a7e18151478f9f.png

来源:机器学习AI算法工程
本文约1700字,建议阅读5分钟
任务是中医药领域的问题生成挑战,而问题生成属于NLG中重要的一种应用。

b39e68a312017bc72331d503db094be7.png

  • 问题生成任务需要我们根据篇章及对应的答案自动生成相应的问题,即“篇章+答案→问题”这样的流程。

  • 训练集由三个字段(篇章、问题、答案)构成,测试集由两个字段(篇章、答案)构成,其中的问题字段需要我们生成。

  • 根据以上分析,我们可以采用Seq2Seq模型来端到端地实现问题生成,而模型的输入为篇章和答案,输出为问题。

179b3d92d8f0234d5dfe8ea781350143.png

文本长度分布

篇章文本长度在100以下的数据较少,长度区间400-500的数据占比较大。

8fa11535db6561d2fcb5d8a01d3290ec.png

问题文本长度主要集中在5-20这个区间,长度40以上的数据较少。

700aec306c4f7e7e07800b1769189ecf.png

答案文本长度主要集中在1-100区间,长度200以上的数据较少。

debc4ba14058ed9242b7fb133453cc52.png

分析总结

  • 训练数据量适中,不是很大数据量,但是也不算少。

  • 文本长度:篇章文本最大,其次是答案文本,最后是问题文本。

  • 如果只看答案文本,那它的长度分布应该是同分布。

  • 若要将篇章、问题和答案拼接进行训练,则需要对其进行文本截断;

    • 问题是要预测的部分,并且长度不是太长,所以可以不进行截断;

    • 答案是从篇章中截取的,可以适当截取短一点;

    • 篇章在硬件资源允许的范围内,可以尽量截取长一点。

80cc16fe402145a80c5d294be8e0f76f.png

7d32f2f1e9ed5acf1eec72a65ebe1619.png

640f1a9f09d603a13ea92c6cc444aa7a.png

1ef4260ac6fcda855b8917d764f48915.png

核心思路

  • 数据预处理:数据清洗(剔除空白字符、剔除带括号的英文),处理部分不匹配数据(绝大部分答案是从篇章中截取的,不匹配数据指答案在篇章中无法完全匹配到的数据);

  • 文本截断:思路是篇章中答案所在位置的附近与问题的相关性最强,答案的前面部分信息最多,问题文本最长131个字符。具体操作是篇章取答案所在位置的前64个字符和后128个字符;答案取前64个字符;问题取前131个字符。

  • 数据输入:训练时按照“[CLS]篇章[SEP]答案[SEP]问题[SEP]”格式输入。推断时按照“[CLS]篇章[SEP]答案[SEP]”格式输入。如图1所示。

  • 模型架构:使用“NEZHA + UniLM”的方式来构建一个Seq2Seq模型,端到端地实现“篇章 + 答案 → 问题”。如图2所示。 

ec6e39c9e5a708cbf87620caa4dd206d.png

UniLM也是一个多层Transformer网络,跟bert类似,但是UniLM能够同时完成三种预训练目标,如上述表格所示,几乎囊括了上述模型的几种预训练方式,而且新增了sequence-to-sequence训练方式,所以其在NLU和NLG任务上都有很好的表现。UniLM模型基于mask词的语境来完成对mask词的预测,也是完形填空任务。对于不同的训练目标,其语境是不同的。

1.单向训练语言模型,mask词的语境就是其单侧的words,左边或者右边。

2.双向训练语言模型,mask词的语境就是左右两侧的words。

3.Seq-to-Seq语言模型,左边的seq我们称sourcesequence,右边的seq我们称为target sequence,我们要预测的就是target sequence,所以其语境就是所有的source sequence和其左侧已经预测出来的target sequence。

优势:

1.三种不同的训练目标,网络参数共享。

2.正是因为网络参数共享,使得模型避免了过拟合于某单一的语言模型,使得学习出来的模型更加general,更具普适性。

3.因为采用了Seq-to-Seq语言模型,使得其在能够完成NLU任务的同时,也能够完成NLG任务,例如:抽象文摘,问答生成。

  • 缓解Exposure Bias问题的策略:1.通过随机替换Decoder的输入词来构造“有代表性”的负样本;2.使用对抗训练来生成扰动样本。

  • 解码:使用Beam search来对问题进行解码。

  • 解决显存不足的方法:由于显存有限,无法使用较大的batch size进行训练,梯度累积优化器可以使用小的batch size实现大batch size的效果——只要你愿意花n倍的时间,可以达到n倍batch size的效果,而不需要增加显存。

  • 其他Trick:

    • 在单模型(NEZHA-Large-WWM)上使用5折交叉验证。

    • 对词表进行精简(因为总的tokens大概有2万个,这意味着最后预测生成的token时是一个2万分类问题,但事实上有接近一半的tokens都不会分出来,因此这2万分类浪费了一些计算量)。

    • EarlyStopping。

    • 伪标签。

0ee4570b23c56636d043578c776e83b2.png

4e82903cf95df7abeafc05d0906e7e50.png

4de62d513445551945cb95f2c60ac435.png

20e3a79e608125331aaa22d7b9b61209.png

经验总结

  • 文本截断策略使得文本能够在满足预训练模型输入的要求下,较少的损失上下文信息,提分效果显著。使用该文本截断策略之前,一直无法提升至0.6+。

  • nezha-large-wwm预训练模型是我们队试过效果是最好的模型,单个的nezha-large-wwm加上之前的技巧就能达到0.64+。nezha-base、nezha-base-wwm和wobert在该任务上效果相差不多,大约0.63+,roberta-wwm-large-ext、bert-wwm-ext大约0.62+。

  • 使用随机替换和对抗训练能够缓解Exposure Bias,使用这两个trick后效果提升也比较明显,大约有百分之二提升。

  • 不使用交叉验证,不划分验证集的情况下,使用全部训练数据进行训练,大约第12个epoch效果最好。使用交叉验证后效果会优于全量训练的结果,缺点是训练推断时间太长。

  • 伪标签是一个比较常用的trick,在该生成任务上,使用伪标签有细微的提升,大约万分之二左右。

  • 梯度累积使得能够用较大的batch size训练large模型,分数上也有细微的提升。

编辑:于腾凯

这篇关于中医药领域的问题生成,阿里天池算法大赛Top1的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/184845

相关文章

Springboot3统一返回类设计全过程(从问题到实现)

《Springboot3统一返回类设计全过程(从问题到实现)》文章介绍了如何在SpringBoot3中设计一个统一返回类,以实现前后端接口返回格式的一致性,该类包含状态码、描述信息、业务数据和时间戳,... 目录Spring Boot 3 统一返回类设计:从问题到实现一、核心需求:统一返回类要解决什么问题?

Java使用Spire.Barcode for Java实现条形码生成与识别

《Java使用Spire.BarcodeforJava实现条形码生成与识别》在现代商业和技术领域,条形码无处不在,本教程将引导您深入了解如何在您的Java项目中利用Spire.Barcodefor... 目录1. Spire.Barcode for Java 简介与环境配置2. 使用 Spire.Barco

maven异常Invalid bound statement(not found)的问题解决

《maven异常Invalidboundstatement(notfound)的问题解决》本文详细介绍了Maven项目中常见的Invalidboundstatement异常及其解决方案,文中通过... 目录Maven异常:Invalid bound statement (not found) 详解问题描述可

idea粘贴空格时显示NBSP的问题及解决方案

《idea粘贴空格时显示NBSP的问题及解决方案》在IDEA中粘贴代码时出现大量空格占位符NBSP,可以通过取消勾选AdvancedSettings中的相应选项来解决... 目录1、背景介绍2、解决办法3、处理完成总结1、背景介绍python在idehttp://www.chinasem.cna粘贴代码,出

SpringBoot整合Kafka启动失败的常见错误问题总结(推荐)

《SpringBoot整合Kafka启动失败的常见错误问题总结(推荐)》本文总结了SpringBoot项目整合Kafka启动失败的常见错误,包括Kafka服务器连接问题、序列化配置错误、依赖配置问题、... 目录一、Kafka服务器连接问题1. Kafka服务器无法连接2. 开发环境与生产环境网络不通二、序

SpringSecurity中的跨域问题处理方案

《SpringSecurity中的跨域问题处理方案》本文介绍了跨域资源共享(CORS)技术在JavaEE开发中的应用,详细讲解了CORS的工作原理,包括简单请求和非简单请求的处理方式,本文结合实例代码... 目录1.什么是CORS2.简单请求3.非简单请求4.Spring跨域解决方案4.1.@CrossOr

SpringBoot集成iText快速生成PDF教程

《SpringBoot集成iText快速生成PDF教程》本文介绍了如何在SpringBoot项目中集成iText9.4.0生成PDF文档,包括新特性的介绍、环境准备、Service层实现、Contro... 目录SpringBoot集成iText 9.4.0生成PDF一、iText 9新特性与架构变革二、环

nacos服务无法注册到nacos服务中心问题及解决

《nacos服务无法注册到nacos服务中心问题及解决》本文详细描述了在Linux服务器上使用Tomcat启动Java程序时,服务无法注册到Nacos的排查过程,通过一系列排查步骤,发现问题出在Tom... 目录简介依赖异常情况排查断点调试原因解决NacosRegisterOnWar结果总结简介1、程序在

解决java.util.RandomAccessSubList cannot be cast to java.util.ArrayList错误的问题

《解决java.util.RandomAccessSubListcannotbecasttojava.util.ArrayList错误的问题》当你尝试将RandomAccessSubList... 目录Java.util.RandomAccessSubList cannot be cast to java.

Apache服务器IP自动跳转域名的问题及解决方案

《Apache服务器IP自动跳转域名的问题及解决方案》本教程将详细介绍如何通过Apache虚拟主机配置实现这一功能,并解决常见问题,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,... 目录​​问题背景​​解决方案​​方法 1:修改 httpd-vhosts.conf(推荐)​​步骤