RNNOISE 16K音频训练方式

2023-10-10 15:18
文章标签 音频 训练 方式 16k rnnoise

本文主要是介绍RNNOISE 16K音频训练方式,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

鉴于很多同学都在问RNNoise如何把48k的原始代码改成能训练16k音频的,

我就把我做的rnnoise 16k的一些小改动开源出来, 一起探讨研究。

 

先mark, 后面详细来介绍如何改,代码已经放上了github

RNNoise_16k 训练代码

https://github.com/YongyuG/rnnoise_16k

有问题请提出来,1年多前的东西,很多代码都没整理

这个东西大家还可以试试的几个地方:

 

1. 多卡训练

2. FFT训练,可以尝试舍弃pitch filter以及滤波了

3.网络结构的实验

4.vad的方法,我好像开源出来了,如果没有的话可以尝试把里面vad替换一下webrtc的vad

 

相信各位聪明的同学已经知道如何修改了!!!!

记得给github项目点赞哦如果有用的话!!

 

这篇关于RNNOISE 16K音频训练方式的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/181291

相关文章

内核启动时减少log的方式

内核引导选项 内核引导选项大体上可以分为两类:一类与设备无关、另一类与设备有关。与设备有关的引导选项多如牛毛,需要你自己阅读内核中的相应驱动程序源码以获取其能够接受的引导选项。比如,如果你想知道可以向 AHA1542 SCSI 驱动程序传递哪些引导选项,那么就查看 drivers/scsi/aha1542.c 文件,一般在前面 100 行注释里就可以找到所接受的引导选项说明。大多数选项是通过"_

用命令行的方式启动.netcore webapi

用命令行的方式启动.netcore web项目 进入指定的项目文件夹,比如我发布后的代码放在下面文件夹中 在此地址栏中输入“cmd”,打开命令提示符,进入到发布代码目录 命令行启动.netcore项目的命令为:  dotnet 项目启动文件.dll --urls="http://*:对外端口" --ip="本机ip" --port=项目内部端口 例: dotnet Imagine.M

深入理解RxJava:响应式编程的现代方式

在当今的软件开发世界中,异步编程和事件驱动的架构变得越来越重要。RxJava,作为响应式编程(Reactive Programming)的一个流行库,为Java和Android开发者提供了一种强大的方式来处理异步任务和事件流。本文将深入探讨RxJava的核心概念、优势以及如何在实际项目中应用它。 文章目录 💯 什么是RxJava?💯 响应式编程的优势💯 RxJava的核心概念

【即时通讯】轮询方式实现

技术栈 LayUI、jQuery实现前端效果。django4.2、django-ninja实现后端接口。 代码仓 - 后端 代码仓 - 前端 实现功能 首次访问页面并发送消息时需要设置昵称发送内容为空时要提示用户不能发送空消息前端定时获取消息,然后展示在页面上。 效果展示 首次发送需要设置昵称 发送消息与消息展示 提示用户不能发送空消息 后端接口 发送消息 DB = []@ro

MiniGPT-3D, 首个高效的3D点云大语言模型,仅需一张RTX3090显卡,训练一天时间,已开源

项目主页:https://tangyuan96.github.io/minigpt_3d_project_page/ 代码:https://github.com/TangYuan96/MiniGPT-3D 论文:https://arxiv.org/pdf/2405.01413 MiniGPT-3D在多个任务上取得了SoTA,被ACM MM2024接收,只拥有47.8M的可训练参数,在一张RTX

脏页的标记方式详解

脏页的标记方式 一、引言 在数据库系统中,脏页是指那些被修改过但还未写入磁盘的数据页。为了有效地管理这些脏页并确保数据的一致性,数据库需要对脏页进行标记。了解脏页的标记方式对于理解数据库的内部工作机制和优化性能至关重要。 二、脏页产生的过程 当数据库中的数据被修改时,这些修改首先会在内存中的缓冲池(Buffer Pool)中进行。例如,执行一条 UPDATE 语句修改了某一行数据,对应的缓

Java 多线程的基本方式

Java 多线程的基本方式 基础实现两种方式: 通过实现Callable 接口方式(可得到返回值):

Spark MLlib模型训练—聚类算法 PIC(Power Iteration Clustering)

Spark MLlib模型训练—聚类算法 PIC(Power Iteration Clustering) Power Iteration Clustering (PIC) 是一种基于图的聚类算法,用于在大规模数据集上进行高效的社区检测。PIC 算法的核心思想是通过迭代图的幂运算来发现数据中的潜在簇。该算法适用于处理大规模图数据,特别是在社交网络分析、推荐系统和生物信息学等领域具有广泛应用。Spa

前端form表单+ifarme方式实现大文件下载

// main.jsimport Vue from 'vue';import App from './App.vue';import { downloadTokenFile } from '@/path/to/your/function'; // 替换为您的函数路径// 将 downloadTokenFile 添加到 Vue 原型上Vue.prototype.$downloadTokenF

SigLIP——采用sigmoid损失的图文预训练方式

SigLIP——采用sigmoid损失的图文预训练方式 FesianXu 20240825 at Wechat Search Team 前言 CLIP中的infoNCE损失是一种对比性损失,在SigLIP这个工作中,作者提出采用非对比性的sigmoid损失,能够更高效地进行图文预训练,本文进行介绍。如有谬误请见谅并联系指出,本文遵守CC 4.0 BY-SA版权协议,转载请联系作者并注