微调codebert、unixcoder、grapghcodebert完成漏洞检测代码

本文主要是介绍微调codebert、unixcoder、grapghcodebert完成漏洞检测代码,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文件结构如下所示: 

mode.py 

# Copyright (c) Microsoft Corporation.
# Licensed under the MIT License.
import torch
import torch.nn as nn
import torch
from torch.autograd import Variable
import copy
from torch.nn import CrossEntropyLoss, MSELossclass Model(nn.Module):   def __init__(self, encoder,config,tokenizer,args):super(Model, self).__init__()self.encoder = encoderself.config=configself.tokenizer=tokenizerself.args=args# Define dropout layer, dropout_probability is taken from args.self.dropout = nn.Dropout(args.dropout_probability)def forward(self, input_ids=None,labels=None): outputs=self.encoder(input_ids,attention_mask=input_ids.ne(1))[0]# Apply dropoutoutputs = self.dropout(outputs)logits=outputsprob=torch.sigmoid(logits)if labels is not None:labels=labels.float()loss=torch.log(prob[:,0]+1e-10)*labels+torch.log((1-prob)[:,0]+1e-10)*(1-labels)loss=-loss.mean()return loss,probelse:return prob

 run.py

# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Fine-tuning the library models for language modeling on a text file (GPT, GPT-2, BERT, RoBERTa).
GPT and GPT-2 are fine-tuned using a causal language modeling (CLM) loss while BERT and RoBERTa are fine-tuned
using a masked language modeling (MLM) loss.
"""from __future__ import absolute_import, division, print_functionimport argparse
import glob
import logging
import os
import pickle
import random
import re
import shutil
import time
import numpy as np
import torch
from torch.utils.data import DataLoader, Dataset, SequentialSampler, RandomSampler,TensorDataset
from torch.utils.data.distributed import DistributedSampler
import json
try:from torch.utils.tensorboard import SummaryWriter
except:from tensorboardX import SummaryWriterfrom tqdm import tqdm, trange
import multiprocessing
from model import Model
from sklearn.metrics import precision_score, recall_score, f1_score,accuracy_score
cpu_cont = multiprocessing.cpu_count()
from transformers import (WEIGHTS_NAME, AdamW, get_linear_schedule_with_warmup,BertConfig, BertForMaskedLM, BertTokenizer, BertForSequenceClassification,GPT2Config, GPT2LMHeadModel, GPT2Tokenizer,OpenAIGPTConfig, OpenAIGPTLMHeadModel, OpenAIGPTTokenizer,RobertaConfig, RobertaForSequenceClassification, RobertaTokenizer,DistilBertConfig, DistilBertForMaskedLM, DistilBertForSequenceClassification, DistilBertTokenizer)logger = logging.getLogger(__name__)MODEL_CLASSES = {'gpt2': (GPT2Config, GPT2LMHeadModel, GPT2Tokenizer),'openai-gpt': (OpenAIGPTConfig, OpenAIGPTLMHeadModel, OpenAIGPTTokenizer),'bert': (BertConfig, BertForSequenceClassification, BertTokenizer),'roberta': (RobertaConfig, RobertaForSequenceClassification, RobertaTokenizer),'distilbert': (DistilBertConfig, DistilBertForSequenceClassification, DistilBertTokenizer)
}class InputFeatures(object):"""A single training/test features for a example."""def __init__(self,input_tokens,input_ids,idx,label,):self.input_tokens = input_tokensself.input_ids = input_idsself.idx=str(idx)self.label=labeldef convert_examples_to_features(js,tokenizer,args):#sourcecode=' '.join(js['func'].split())code_tokens=tokenizer.tokenize(code)[:args.block_size-2]source_tokens =[tokenizer.cls_token]+code_tokens+[tokenizer.sep_token]source_ids =  tokenizer.convert_tokens_to_ids(source_tokens)padding_length = args.block_size - len(source_ids)source_ids+=[tokenizer.pad_token_id]*padding_lengthreturn InputFeatures(source_tokens,source_ids,js['idx'],js['target'])class TextDataset(Dataset):def __init__(self, tokenizer, args, file_path=None):self.examples = []with open(file_path) as f:for line in f:js=json.loads(line.strip())self.examples.append(convert_examples_to_features(js,tokenizer,args))if 'train' in file_path:for idx, example in enumerate(self.examples[:3]):logger.info("*** Example ***")logger.info("idx: {}".format(idx))logger.info("label: {}".format(example.label))logger.info("input_tokens: {}".format([x.replace('\u0120','_') for x in example.input_tokens]))logger.info("input_ids: {}".format(' '.join(map(str, example.input_ids))))def __len__(self):return len(self.examples)def __getitem__(self, i):       return torch.tensor(self.examples[i].input_ids),torch.tensor(self.examples[i].label)def set_seed(seed=42):random.seed(seed)os.environ['PYHTONHASHSEED'] = str(seed)np.random.seed(seed)torch.manual_seed(seed)torch.cuda.manual_seed(seed)torch.backends.cudnn.deterministic = Truedef train(args, train_dataset, model, tokenizer):""" Train the model """ args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu)train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset)train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size,num_workers=4,pin_memory=True)args.max_steps=args.epoch*len( train_dataloader)args.save_steps=len( train_dataloader)args.warmup_steps=len( train_dataloader)args.logging_steps=len( train_dataloader)args.num_train_epochs=args.epochmodel.to(args.device)# Prepare optimizer and schedule (linear warmup and decay)no_decay = ['bias', 'LayerNorm.weight']optimizer_grouped_parameters = [{'params': [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],'weight_decay': args.weight_decay},{'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}]num_params = sum(p.numel() for p in model.parameters())trainable_param = sum(p.numel() for p in model.parameters() if p.requires_grad )logger.info(f"Number of model parameters: {num_params}")logger.info(f"Number of model trainable_param: {trainable_param}")optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=args.max_steps*0.1,num_training_steps=args.max_steps)if args.fp16:try:from apex import ampexcept ImportError:raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)# multi-gpu training (should be after apex fp16 initialization)if args.n_gpu > 1:model = torch.nn.DataParallel(model)# Distributed training (should be after apex fp16 initialization)if args.local_rank != -1:model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank],output_device=args.local_rank,find_unused_parameters=True)checkpoint_last = os.path.join(args.output_dir, 'checkpoint-last')scheduler_last = os.path.join(checkpoint_last, 'scheduler.pt')optimizer_last = os.path.join(checkpoint_last, 'optimizer.pt')if os.path.exists(scheduler_last):scheduler.load_state_dict(torch.load(scheduler_last))if os.path.exists(optimizer_last):optimizer.load_state_dict(torch.load(optimizer_last))# Train!logger.info("***** Running training *****")logger.info("  Num examples = %d", len(train_dataset))logger.info("  Num Epochs = %d", args.num_train_epochs)logger.info("  Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size)logger.info("  Total train batch size (w. parallel, distributed & accumulation) = %d",args.train_batch_size * args.gradient_accumulation_steps * (torch.distributed.get_world_size() if args.local_rank != -1 else 1))logger.info("  Gradient Accumulation steps = %d", args.gradient_accumulation_steps)logger.info("  Total optimization steps = %d", args.max_steps)global_step = args.start_steptr_loss, logging_loss,avg_loss,tr_nb,tr_num,train_loss = 0.0, 0.0,0.0,0,0,0best_mrr=0.0best_acc=0.0# model.resize_token_embeddings(len(tokenizer))model.zero_grad()# Initialize early stopping parameters at the start of trainingearly_stopping_counter = 0best_loss = Nonefor idx in range(args.start_epoch, int(args.num_train_epochs)):bar = tqdm(train_dataloader,total=len(train_dataloader))tr_num=0train_loss=0for step, batch in enumerate(bar):inputs = batch[0].to(args.device)        labels=batch[1].to(args.device) model.train()loss,logits = model(inputs,labels)preds = logits[:, 0] > 0.5if args.n_gpu > 1:loss = loss.mean()  # mean() to average on multi-gpu parallel trainingif args.gradient_accumulation_steps > 1:loss = loss / args.gradient_accumulation_stepsif args.fp16:with amp.scale_loss(loss, optimizer) as scaled_loss:scaled_loss.backward()torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm)else:loss.backward()torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)tr_loss += loss.item()tr_num+=1train_loss+=loss.item()if avg_loss==0:avg_loss=tr_lossavg_loss=round(train_loss/tr_num,5)bar.set_description("epoch {} loss {}".format(idx,avg_loss))if (step + 1) % args.gradient_accumulation_steps == 0:optimizer.step()optimizer.zero_grad()scheduler.step()  global_step += 1output_flag=Trueavg_loss=round(np.exp((tr_loss - logging_loss) /(global_step- tr_nb)),4)if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0:logging_loss = tr_losstr_nb=global_stepif args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0:if args.local_rank == -1 and args.evaluate_during_training:  # Only evaluate when single GPU otherwise metrics may not average wellresults = evaluate(args, model, tokenizer,eval_when_training=True)for key, value in results.items():logger.info("  %s = %s", key, round(value,4))                    # Save model checkpointif results['eval_acc']>best_acc:best_acc=results['eval_acc']logger.info("  "+"*"*20)  logger.info("  Best acc:%s",round(best_acc,4))logger.info("  "+"*"*20)                          checkpoint_prefix = 'checkpoint-best-acc'output_dir = os.path.join(args.output_dir, '{}'.format(checkpoint_prefix))                        if not os.path.exists(output_dir):os.makedirs(output_dir)                        model_to_save = model.module if hasattr(model,'module') else modeloutput_dir = os.path.join(output_dir, '{}'.format('model.bin')) torch.save(model_to_save.state_dict(), output_dir)logger.info("Saving model checkpoint to %s", output_dir)# Calculate average loss for the epochavg_loss = train_loss / tr_num# Check for early stopping conditionif args.early_stopping_patience is not None:if best_loss is None or avg_loss < best_loss - args.min_loss_delta:best_loss = avg_lossearly_stopping_counter = 0else:early_stopping_counter += 1if early_stopping_counter >= args.early_stopping_patience:logger.info("Early stopping")break  # Exit the loop earlydef evaluate(args, model, tokenizer,eval_when_training=False):# Loop to handle MNLI double evaluation (matched, mis-matched)eval_output_dir = args.output_direval_dataset = TextDataset(tokenizer, args,args.eval_data_file)if not os.path.exists(eval_output_dir) and args.local_rank in [-1, 0]:os.makedirs(eval_output_dir)args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)# Note that DistributedSampler samples randomlyeval_sampler = SequentialSampler(eval_dataset) if args.local_rank == -1 else DistributedSampler(eval_dataset)eval_dataloader = DataLoader(eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size,num_workers=4,pin_memory=True)# multi-gpu evaluateif args.n_gpu > 1 and eval_when_training is False:model = torch.nn.DataParallel(model)# Eval!logger.info("***** Running evaluation *****")logger.info("  Num examples = %d", len(eval_dataset))logger.info("  Batch size = %d", args.eval_batch_size)eval_loss = 0.0nb_eval_steps = 0model.eval()logits=[]labels=[]for batch in eval_dataloader:inputs = batch[0].to(args.device)label=batch[1].to(args.device)with torch.no_grad():lm_loss,logit = model(inputs,label)eval_loss += lm_loss.mean().item()logits.append(logit.cpu().numpy())labels.append(label.cpu().numpy())nb_eval_steps += 1logits=np.concatenate(logits,0)labels=np.concatenate(labels,0)preds=logits[:,0]>0.5eval_acc=np.mean(labels==preds)precision = precision_score(labels, preds)recall = recall_score(labels, preds)f1 = f1_score(labels, preds)eval_loss = eval_loss / nb_eval_stepsperplexity = torch.tensor(eval_loss)logger.info(f"test_Evaluation Accuracy: {eval_acc}\n")logger.info(f"test_Precision: {precision}")logger.info(f"test_Recall: {recall}")logger.info(f"test_F1 Score: {f1}")result = {"eval_loss": float(perplexity),"eval_acc":round(eval_acc,4),}end_time = time.time()elapsed_time = end_time - start_time# Log timing informationlogger.info(f"{ elapsed_time:.2f}")return resultdef test(args, model, tokenizer):# Loop to handle MNLI double evaluation (matched, mis-matched)eval_dataset = TextDataset(tokenizer, args,args.test_data_file)args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)# Note that DistributedSampler samples randomlyeval_sampler = SequentialSampler(eval_dataset) if args.local_rank == -1 else DistributedSampler(eval_dataset)eval_dataloader = DataLoader(eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size)# multi-gpu evaluateif args.n_gpu > 1:model = torch.nn.DataParallel(model)# Eval!logger.info("***** Running Test *****")logger.info("  Num examples = %d", len(eval_dataset))logger.info("  Batch size = %d", args.eval_batch_size)eval_loss = 0.0nb_eval_steps = 0model.eval()logits=[]   labels=[]for batch in tqdm(eval_dataloader,total=len(eval_dataloader)):inputs = batch[0].to(args.device)        label=batch[1].to(args.device) with torch.no_grad():logit = model(inputs)logits.append(logit.cpu().numpy())labels.append(label.cpu().numpy())logits=np.concatenate(logits,0)labels=np.concatenate(labels,0)preds=logits[:,0]>0.5with open(os.path.join(args.output_dir,"predictions.txt"),'w') as f:for example,pred in zip(eval_dataset.examples,preds):if pred:f.write(example.idx+'\t1\n')else:f.write(example.idx+'\t0\n')    def main():parser = argparse.ArgumentParser()## Required parametersparser.add_argument("--train_data_file", default=None, type=str, required=True,help="The input training data file (a text file).")parser.add_argument("--output_dir", default=None, type=str, required=True,help="The output directory where the model predictions and checkpoints will be written.")## Other parametersparser.add_argument("--eval_data_file", default=None, type=str,help="An optional input evaluation data file to evaluate the perplexity on (a text file).")parser.add_argument("--test_data_file", default=None, type=str,help="An optional input evaluation data file to evaluate the perplexity on (a text file).")parser.add_argument("--model_type", default="bert", type=str,help="The model architecture to be fine-tuned.")parser.add_argument("--model_name_or_path", default=None, type=str,help="The model checkpoint for weights initialization.")parser.add_argument("--mlm", action='store_true',help="Train with masked-language modeling loss instead of language modeling.")parser.add_argument("--mlm_probability", type=float, default=0.15,help="Ratio of tokens to mask for masked language modeling loss")parser.add_argument("--config_name", default="", type=str,help="Optional pretrained config name or path if not the same as model_name_or_path")parser.add_argument("--tokenizer_name", default="", type=str,help="Optional pretrained tokenizer name or path if not the same as model_name_or_path")parser.add_argument("--cache_dir", default="", type=str,help="Optional directory to store the pre-trained models downloaded from s3 (instread of the default one)")parser.add_argument("--block_size", default=-1, type=int,help="Optional input sequence length after tokenization.""The training dataset will be truncated in block of this size for training.""Default to the model max input length for single sentence inputs (take into account special tokens).")parser.add_argument("--do_train", action='store_true',help="Whether to run training.")parser.add_argument("--do_eval", action='store_true',help="Whether to run eval on the dev set.")parser.add_argument("--do_test", action='store_true',help="Whether to run eval on the dev set.")    parser.add_argument("--evaluate_during_training", action='store_true',help="Run evaluation during training at each logging step.")parser.add_argument("--do_lower_case", action='store_true',help="Set this flag if you are using an uncased model.")parser.add_argument("--train_batch_size", default=4, type=int,help="Batch size per GPU/CPU for training.")parser.add_argument("--eval_batch_size", default=4, type=int,help="Batch size per GPU/CPU for evaluation.")parser.add_argument('--gradient_accumulation_steps', type=int, default=1,help="Number of updates steps to accumulate before performing a backward/update pass.")parser.add_argument("--learning_rate", default=5e-5, type=float,help="The initial learning rate for Adam.")parser.add_argument("--weight_decay", default=0.0, type=float,help="Weight deay if we apply some.")parser.add_argument("--adam_epsilon", default=1e-8, type=float,help="Epsilon for Adam optimizer.")parser.add_argument("--max_grad_norm", default=1.0, type=float,help="Max gradient norm.")parser.add_argument("--num_train_epochs", default=1.0, type=float,help="Total number of training epochs to perform.")parser.add_argument("--max_steps", default=-1, type=int,help="If > 0: set total number of training steps to perform. Override num_train_epochs.")parser.add_argument("--warmup_steps", default=0, type=int,help="Linear warmup over warmup_steps.")parser.add_argument('--logging_steps', type=int, default=50,help="Log every X updates steps.")parser.add_argument('--save_steps', type=int, default=50,help="Save checkpoint every X updates steps.")parser.add_argument('--save_total_limit', type=int, default=None,help='Limit the total amount of checkpoints, delete the older checkpoints in the output_dir, does not delete by default')parser.add_argument("--eval_all_checkpoints", action='store_true',help="Evaluate all checkpoints starting with the same prefix as model_name_or_path ending and ending with step number")parser.add_argument("--no_cuda", action='store_true',help="Avoid using CUDA when available")parser.add_argument('--overwrite_output_dir', action='store_true',help="Overwrite the content of the output directory")parser.add_argument('--overwrite_cache', action='store_true',help="Overwrite the cached training and evaluation sets")parser.add_argument('--seed', type=int, default=42,help="random seed for initialization")parser.add_argument('--epoch', type=int, default=42,help="random seed for initialization")parser.add_argument('--fp16', action='store_true',help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit")parser.add_argument('--fp16_opt_level', type=str, default='O1',help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3'].""See details at https://nvidia.github.io/apex/amp.html")parser.add_argument("--local_rank", type=int, default=-1,help="For distributed training: local_rank")parser.add_argument('--server_ip', type=str, default='', help="For distant debugging.")parser.add_argument('--server_port', type=str, default='', help="For distant debugging.")# Add early stopping parameters and dropout probability parametersparser.add_argument("--early_stopping_patience", type=int, default=None,help="Number of epochs with no improvement after which training will be stopped.")parser.add_argument("--min_loss_delta", type=float, default=0.001,help="Minimum change in the loss required to qualify as an improvement.")parser.add_argument('--dropout_probability', type=float, default=0, help='dropout probability')args = parser.parse_args()# Setup distant debugging if neededif args.server_ip and args.server_port:# Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-scriptimport ptvsdprint("Waiting for debugger attach")ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True)ptvsd.wait_for_attach()# Setup CUDA, GPU & distributed trainingif args.local_rank == -1 or args.no_cuda:device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")args.n_gpu = torch.cuda.device_count()else:  # Initializes the distributed backend which will take care of sychronizing nodes/GPUstorch.cuda.set_device(args.local_rank)device = torch.device("cuda", args.local_rank)torch.distributed.init_process_group(backend='nccl')args.n_gpu = 1args.device = deviceargs.per_gpu_train_batch_size=args.train_batch_size//args.n_gpuargs.per_gpu_eval_batch_size=args.eval_batch_size//args.n_gpu# Setup logginglogging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s -   %(message)s',datefmt='%m/%d/%Y %H:%M:%S',level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN)logger.warning("Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",args.local_rank, device, args.n_gpu, bool(args.local_rank != -1), args.fp16)# Set seedset_seed(args.seed)# Load pretrained model and tokenizerif args.local_rank not in [-1, 0]:torch.distributed.barrier()  # Barrier to make sure only the first process in distributed training download model & vocabargs.start_epoch = 0args.start_step = 0checkpoint_last = os.path.join(args.output_dir, 'checkpoint-last')if os.path.exists(checkpoint_last) and os.listdir(checkpoint_last):args.model_name_or_path = os.path.join(checkpoint_last, 'pytorch_model.bin')args.config_name = os.path.join(checkpoint_last, 'config.json')idx_file = os.path.join(checkpoint_last, 'idx_file.txt')with open(idx_file, encoding='utf-8') as idxf:args.start_epoch = int(idxf.readlines()[0].strip()) + 1step_file = os.path.join(checkpoint_last, 'step_file.txt')if os.path.exists(step_file):with open(step_file, encoding='utf-8') as stepf:args.start_step = int(stepf.readlines()[0].strip())logger.info("reload model from {}, resume from {} epoch".format(checkpoint_last, args.start_epoch))config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type]config = config_class.from_pretrained(args.config_name if args.config_name else args.model_name_or_path,cache_dir=args.cache_dir if args.cache_dir else None)config.num_labels=1tokenizer = tokenizer_class.from_pretrained(args.tokenizer_name,do_lower_case=args.do_lower_case,cache_dir=args.cache_dir if args.cache_dir else None)if args.block_size <= 0:args.block_size = tokenizer.max_len_single_sentence  # Our input block size will be the max possible for the modelargs.block_size = min(args.block_size, tokenizer.max_len_single_sentence)if args.model_name_or_path:model = model_class.from_pretrained(args.model_name_or_path,from_tf=bool('.ckpt' in args.model_name_or_path),config=config,cache_dir=args.cache_dir if args.cache_dir else None)    else:model = model_class(config)model=Model(model,config,tokenizer,args)if args.local_rank == 0:torch.distributed.barrier()  # End of barrier to make sure only the first process in distributed training download model & vocablogger.info("Training/evaluation parameters %s", args)# Trainingif args.do_train:if args.local_rank not in [-1, 0]:torch.distributed.barrier()  # Barrier to make sure only the first process in distributed training process the dataset, and the others will use the cachetrain_dataset = TextDataset(tokenizer, args,args.train_data_file)if args.local_rank == 0:torch.distributed.barrier()train(args, train_dataset, model, tokenizer)# Evaluationresults = {}if args.do_eval and args.local_rank in [-1, 0]:checkpoint_prefix = 'checkpoint-best-acc/model.bin'output_dir = os.path.join(args.output_dir, '{}'.format(checkpoint_prefix))  model.load_state_dict(torch.load(output_dir))      model.to(args.device)result=evaluate(args, model, tokenizer)logger.info("***** Eval results *****")for key in sorted(result.keys()):logger.info("  %s = %s", key, str(round(result[key],4)))if args.do_test and args.local_rank in [-1, 0]:checkpoint_prefix = 'checkpoint-best-acc/model.bin'output_dir = os.path.join(args.output_dir, '{}'.format(checkpoint_prefix))  model.load_state_dict(torch.load(output_dir))                  model.to(args.device)test(args, model, tokenizer)return resultsif __name__ == "__main__":start_time = time.time()main()

run.sh

python run.pq \--output_dir=./saved_models \--model_type=roberta \--tokenizer_name=microsoft/unixcoder-base \--model_name_or_path=microsoft/unixcoder-base \--do_train \--train_data_file=/data/code/codebert/dataset/dataset/d2a/d2a_train.json \--eval_data_file=/data/code/codebert/dataset/dataset/d2a/d2a_test.json \--epoch 20  \--block_size 400 \--train_batch_size 4 \--eval_batch_size 8 \--learning_rate 2e-6 \--max_grad_norm 1.0 \--evaluate_during_training \--seed 123213  2>&1 | tee ada.log

这篇关于微调codebert、unixcoder、grapghcodebert完成漏洞检测代码的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/177930

相关文章

Flutter监听当前页面可见与隐藏状态的代码详解

《Flutter监听当前页面可见与隐藏状态的代码详解》文章介绍了如何在Flutter中使用路由观察者来监听应用进入前台或后台状态以及页面的显示和隐藏,并通过代码示例讲解的非常详细,需要的朋友可以参考下... flutter 可以监听 app 进入前台还是后台状态,也可以监听当http://www.cppcn

Python使用PIL库将PNG图片转换为ICO图标的示例代码

《Python使用PIL库将PNG图片转换为ICO图标的示例代码》在软件开发和网站设计中,ICO图标是一种常用的图像格式,特别适用于应用程序图标、网页收藏夹图标等场景,本文将介绍如何使用Python的... 目录引言准备工作代码解析实践操作结果展示结语引言在软件开发和网站设计中,ICO图标是一种常用的图像

Java中有什么工具可以进行代码反编译详解

《Java中有什么工具可以进行代码反编译详解》:本文主要介绍Java中有什么工具可以进行代码反编译的相关资,料,包括JD-GUI、CFR、Procyon、Fernflower、Javap、Byte... 目录1.JD-GUI2.CFR3.Procyon Decompiler4.Fernflower5.Jav

javaScript在表单提交时获取表单数据的示例代码

《javaScript在表单提交时获取表单数据的示例代码》本文介绍了五种在JavaScript中获取表单数据的方法:使用FormData对象、手动提取表单数据、使用querySelector获取单个字... 方法 1:使用 FormData 对象FormData 是一个方便的内置对象,用于获取表单中的键值

Vue ElementUI中Upload组件批量上传的实现代码

《VueElementUI中Upload组件批量上传的实现代码》ElementUI中Upload组件批量上传通过获取upload组件的DOM、文件、上传地址和数据,封装uploadFiles方法,使... ElementUI中Upload组件如何批量上传首先就是upload组件 <el-upl

C++使用栈实现括号匹配的代码详解

《C++使用栈实现括号匹配的代码详解》在编程中,括号匹配是一个常见问题,尤其是在处理数学表达式、编译器解析等任务时,栈是一种非常适合处理此类问题的数据结构,能够精确地管理括号的匹配问题,本文将通过C+... 目录引言问题描述代码讲解代码解析栈的状态表示测试总结引言在编程中,括号匹配是一个常见问题,尤其是在

Java调用DeepSeek API的最佳实践及详细代码示例

《Java调用DeepSeekAPI的最佳实践及详细代码示例》:本文主要介绍如何使用Java调用DeepSeekAPI,包括获取API密钥、添加HTTP客户端依赖、创建HTTP请求、处理响应、... 目录1. 获取API密钥2. 添加HTTP客户端依赖3. 创建HTTP请求4. 处理响应5. 错误处理6.

Python如何实现PDF隐私信息检测

《Python如何实现PDF隐私信息检测》随着越来越多的个人信息以电子形式存储和传输,确保这些信息的安全至关重要,本文将介绍如何使用Python检测PDF文件中的隐私信息,需要的可以参考下... 目录项目背景技术栈代码解析功能说明运行结php果在当今,数据隐私保护变得尤为重要。随着越来越多的个人信息以电子形

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景

Python中顺序结构和循环结构示例代码

《Python中顺序结构和循环结构示例代码》:本文主要介绍Python中的条件语句和循环语句,条件语句用于根据条件执行不同的代码块,循环语句用于重复执行一段代码,文章还详细说明了range函数的使... 目录一、条件语句(1)条件语句的定义(2)条件语句的语法(a)单分支 if(b)双分支 if-else(