redis中高并发问题

2023-10-09 19:45
文章标签 问题 redis 并发 中高

本文主要是介绍redis中高并发问题,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

高并发问题

Redis 做缓存虽减轻了 DBMS 的压力,减小了 RT,但在高并发情况下也是可能会出现各
种问题的。

1 缓存穿透

当用户访问的数据既不在缓存也不在数据库中时,就会导致每个用户查询都会“穿透”
缓存“直抵”数据库。这种情况就称为缓存穿透。当高度发的访问请求到达时,缓存穿透不
仅增加了响应时间,而且还会引发对 DBMS 的高并发查询,这种高并发查询很可能会导致
DBMS 的崩溃。
缓存穿透产生的主要原因有两个:一是在数据库中没有相应的查询结果,二是查询结果
为空时,不对查询结果进行缓存。所以,针对以上两点,解决方案也有两个:
 对非法请求进行限制
 对结果为空的查询给出默认值

2 缓存击穿

对于某一个缓存,在高并发情况下若其访问量特别巨大,当该缓存的有效时限到达时,
可能会出现大量的访问都要重建该缓存,即这些访问请求发现缓存中没有该数据,则立即到
DBMS 中进行查询,那么这就有可能会引发对 DBMS 的高并发查询,从而接导致 DBMS 的崩
溃。这种情况称为缓存击穿,而该缓存数据称为热点数据。
对于缓存击穿的解决方案,较典型的是使用“双重检测锁”机制。

3 缓存雪崩

对于缓存中的数据,很多都是有过期时间的。若大量缓存的过期时间在同一很短的时间
段内几乎同时到达,那么在高并发访问场景下就可能会引发对 DBMS 的高并发查询,而这将
可能直接导致 DBMS 的崩溃。这种情况称为缓存雪崩。
对于缓存雪崩没有很直接的解决方案,最好的解决方案就是预防,即提前规划好缓存的
过期时间。要么就是让缓存永久有效,当 DB 中数据发生变化时清除相应的缓存。如果 DBMS
采用的是分布式部署,则将热点数据均匀分布在不同数据库节点中,将可能到来的访问负载均衡开来

数据库缓存双写不一致(难点)

以上三种情况都是针对高并发读场景中可能会出现的问题,而数据库缓存双写不一致问
题,则是在高并发写场景下可能会出现的问题。
对于数据库缓存双写不一致问题,以下两种场景下均有可能会发生:

(1) “修改 DB 更新缓存”场景

对于具有缓存 warmup 功能的系统,DBMS 中常用数据的变更,都会引发缓存中相关数
据的更新。在高并发写请求场景下,若多个请求要对 DBMS 中同一个数据进行修改,修改后
还需要更新缓存中相关数据,那么就有可能会出现缓存与数据库中数据不一致的情况。
在这里插入图片描述

(2) “修改 DB 删除缓存”场景

在很多系统中是没有缓存 warmup 功能的,为了保持缓存与数据库数据的一致性,一般
都是在对数据库执行了写操作后,就会删除相应缓存。
在高并发读写请求场景下,若这些请求对 DBMS 中同一个数据的操作既包含写也包含读,
且修改后还要删除缓存中相关数据,那么就有可能会出现缓存与数据库中数据不一致的情况。
在这里插入图片描述

(3) 解决方案:延迟双删

延迟双删方案是专门针对于“修改 DB 删除缓存”场景的解决方案。但该方案并不能彻
底解决数据不一致的状况,其只可能降低发生数据不一致的概率。
延迟双删方案是指,在写操作完毕后会立即执行一次缓存的删除操作,然后再停上一段
时间(一般为几秒)后再进行一次删除。而两次删除中间的间隔时长,要大于一次缓存写操
作的时长。
在这里插入图片描述

(4) 解决方案:队列

以上两种场景中,只所以会出现数据库与缓存中数据不一致,主要是因为对请求的处理
出现了并行。只要将请求写入到一个统一的队列,只有处理完一个请求后才可处理下一个请
求,即使系统对用户请求的处理串行化,就可以完全解决数据不一致的问题。

(5) 解决方案:分布式锁

使用队列的串行化虽然可以解决数据库与缓存中数据不一致,但系统失去了并发性,降
低了性能。使用分布式锁可以在不影响并发性的前提下,协调各处理线程间的关系,使数据
库与缓存中的数据达成一致性。
只需要对数据库中的这个共享数据的访问通过分布式锁来协调对其的操作访问即可。

这篇关于redis中高并发问题的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/175142

相关文章

MybatisGenerator文件生成不出对应文件的问题

《MybatisGenerator文件生成不出对应文件的问题》本文介绍了使用MybatisGenerator生成文件时遇到的问题及解决方法,主要步骤包括检查目标表是否存在、是否能连接到数据库、配置生成... 目录MyBATisGenerator 文件生成不出对应文件先在项目结构里引入“targetProje

C#使用HttpClient进行Post请求出现超时问题的解决及优化

《C#使用HttpClient进行Post请求出现超时问题的解决及优化》最近我的控制台程序发现有时候总是出现请求超时等问题,通常好几分钟最多只有3-4个请求,在使用apipost发现并发10个5分钟也... 目录优化结论单例HttpClient连接池耗尽和并发并发异步最终优化后优化结论我直接上优化结论吧,

Java内存泄漏问题的排查、优化与最佳实践

《Java内存泄漏问题的排查、优化与最佳实践》在Java开发中,内存泄漏是一个常见且令人头疼的问题,内存泄漏指的是程序在运行过程中,已经不再使用的对象没有被及时释放,从而导致内存占用不断增加,最终... 目录引言1. 什么是内存泄漏?常见的内存泄漏情况2. 如何排查 Java 中的内存泄漏?2.1 使用 J

numpy求解线性代数相关问题

《numpy求解线性代数相关问题》本文主要介绍了numpy求解线性代数相关问题,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 在numpy中有numpy.array类型和numpy.mat类型,前者是数组类型,后者是矩阵类型。数组

解决systemctl reload nginx重启Nginx服务报错:Job for nginx.service invalid问题

《解决systemctlreloadnginx重启Nginx服务报错:Jobfornginx.serviceinvalid问题》文章描述了通过`systemctlstatusnginx.se... 目录systemctl reload nginx重启Nginx服务报错:Job for nginx.javas

Redis主从/哨兵机制原理分析

《Redis主从/哨兵机制原理分析》本文介绍了Redis的主从复制和哨兵机制,主从复制实现了数据的热备份和负载均衡,而哨兵机制可以监控Redis集群,实现自动故障转移,哨兵机制通过监控、下线、选举和故... 目录一、主从复制1.1 什么是主从复制1.2 主从复制的作用1.3 主从复制原理1.3.1 全量复制

Redis延迟队列的实现示例

《Redis延迟队列的实现示例》Redis延迟队列是一种使用Redis实现的消息队列,本文主要介绍了Redis延迟队列的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习... 目录一、什么是 Redis 延迟队列二、实现原理三、Java 代码示例四、注意事项五、使用 Redi

Redis缓存问题与缓存更新机制详解

《Redis缓存问题与缓存更新机制详解》本文主要介绍了缓存问题及其解决方案,包括缓存穿透、缓存击穿、缓存雪崩等问题的成因以及相应的预防和解决方法,同时,还详细探讨了缓存更新机制,包括不同情况下的缓存更... 目录一、缓存问题1.1 缓存穿透1.1.1 问题来源1.1.2 解决方案1.2 缓存击穿1.2.1

redis-cli命令行工具的使用小结

《redis-cli命令行工具的使用小结》redis-cli是Redis的命令行客户端,支持多种参数用于连接、操作和管理Redis数据库,本文给大家介绍redis-cli命令行工具的使用小结,感兴趣的... 目录基本连接参数基本连接方式连接远程服务器带密码连接操作与格式参数-r参数重复执行命令-i参数指定命

深入理解Redis大key的危害及解决方案

《深入理解Redis大key的危害及解决方案》本文主要介绍了深入理解Redis大key的危害及解决方案,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着... 目录一、背景二、什么是大key三、大key评价标准四、大key 产生的原因与场景五、大key影响与危