又双叒反转?美国院士复现室温超导!

2023-10-09 17:40

本文主要是介绍又双叒反转?美国院士复现室温超导!,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

室温超导又双叒反转?

 

没错,就是今年3月差点掀翻物理界的“21℃室温超导新材料”成果,来自美国罗彻斯特大学Ranga Dias团队。

尽管存在置疑,目前原论文仍然在《自然》期刊上可以查阅、并没有撤稿。

当时国内外很多团队都立刻尝试复现实验,却均宣告失败,质疑声铺天盖地。然而现在,美国国家科学院院士又发表论文称:

已初步复现结果。

并指出,其他团队没有成功,是因为样本制备不当

Russell J. Hemley

这位院士名叫Russell Hemley,是国际高压领域著名专家。他的团队的复现方法,是基于Dias提供的材料实现的。

——他们在Lu-N-H样品上进行了电阻测量,发现该材料在室温附近得到的Tc值以及对氮掺杂氢化镥的压力依赖性,和之前Dias的结果十分接近,也就是这一全新材料的确出现了室温超导现象。

与此同时,这项成果是基于另一组相同材料的实验在不同实验室同步进行、独立测量的,似乎能够进一步证明其可信度。

实验详细过程也在文中揭露,包括:

-通过Raman光谱测量发现Lu-N-H样品中存在与Compound A(Dasenbrock-Gammon等团队使用Lu-N-H在10kbar的极低压力下实现294K的室温超导性)相匹配的特征峰;

- 使用压力电阻计测量样品的电阻和标准红宝石荧光方法测量压力,发现在8.5 kbar的压力下,Lu-N-H样品的电阻在冷却和升温过程中表现出不同的特性,可能与样品超导性有关;

- 使用原位共焦拉曼测量和电输运测量,验证了Lu-N-H样品的结构和相一致,并且发现样品的制备条件对于成功合成超导材料至关重要。

不仅如此,Hemley这篇论文还重点回应了南大闻海虎等团队之前的证伪实验。文章表示:

也就是说,成功合成超导材料强烈依赖于样品制备的详细信息,需要进一步研究和优化这些程序。大家都没能复现出来,是合成材料的方法跟原始Dias所用的方法不一样(而他直接拿到了原始样品,才复现了实验)

除此之外,Hemley还讨论了为什么“合成方法不同就会导致样品发生变异,因而显示不出超导性”。


总之,这一材料的合成不仅严重依赖于材料结构(包括氮杂质控制),还要全面考虑到化学计量和N-H空位的有序性等条件。

所以,美国院士这一复现实验能代表Dias反转成功吗?

——各方观点不一。

知乎网友@笠道梓表示:要想坚实证明室温超导,除了电阻数据,还有磁化率数据显示的迈斯纳(Meissner)效应才行。但Hemley院士的复现只包含了前者

这也是被很多人反复质疑的一个点。

另外,还有人指出,施加外磁场压制超导的实验数据和比热数据也没有呈现。

总之就是,只提供了一方面的单一数据,信服度还不够。

还有人质疑为什么Dias能提供给他原始样品。

这就要从俩人的“特殊关系”说起了。据了解,Hemley教授一直与Dias团队在超导材料研究方面有广泛合作,同时也是Dias的支持者。

因此,有人也表示,可不可以将样品再寄给别的团队再进行复现呢?

当然,也有网友称,“找自己人帮忙”其实可能也有Dias团队自己的考量。

支持的声音也并不缺乏,如知友@SACE就在通读论文后表示:

Hemley的实验有理有据,只要所用材料是真的,室温超导的真实性其实可以算是上升了一大截的。

现在就需要更多科学家对材料真伪进行研究。

事发,《环球科学》便火速采访了南大闻海虎教授。

《环球科学》:请问您和团队5月份发表于《自然》的研究,从哪些方面可以明确否定氮掺杂的镥氢化物的室温超导性?

《环球科学》:如果要确定一种材料的超导性,有哪些衡量标准?

闻海虎:首先,超导的基本特征要非常明确,一个是零电阻态。还有一个也要非常明确的是我们叫迈斯纳效应,就是抗磁效应,也就是说超导体要把磁场排到体外。那么,(6月9日发表在预印本上的)这篇文章拿了迪亚斯他们其中一个样品(估计是提前测过并带高压包直接拿过来的)进行了另外一次电阻测量,文中显示电阻下降的没有更多的样品——只是一个样品,然后测量了一下电阻,说电阻到零了。那么,这其实相当于把迪亚斯那篇文章中的一个样品,到另外一个课题组里重新测量了一下。新测量的结果里面有很多破绽。

我可以谈一谈目前这篇贴出来的文章有什么破绽。为什么我们现在质疑这个不是超导呢?就是说电阻转变太突然、太陡了。这违反了超导现象的基本认知。比如,99.99%纯度的铌超导体,我们的测量电阻转变宽度是0.2K,也做不到他们这个电阻这么陡峭,更何况铌的超导温度才9K,而现在的所谓「超导体」温度有240K甚至更高,电阻转变宽度才0.1K,要知道此时的热激活出来的电子已经很多了,转变不可能如此之窄的。所以说,他们得到的曲线本身就是违反超导的基本认知。

第二,它的文中显示的电极做得很糟糕。他们图片上显示的电极等形状很不规范,甚至可以用糟糕二字来形容。对于一个好的高压实验,糟糕的电极连接是不允许的,否则会出现很奇怪的结果。

第三,超导不是说电阻掉一下就是超导,还需要其他更本征的性质,特别是磁性质,比如抗磁性质或者电阻曲线在磁场下向低温移动。这一点非常关键,没有这个性质就不能谈已经发现超导了。至于是测量的样品电阻是否真正为零,还是电压为零,这是两码事,需要仔细甄别。

所以基于这三点,现在看起来根本也谈不上网络上说的峰回路转。这电阻的陡降极有可能是个假象,原因待查。

《环球科学》:我想再确认一下,您刚说的这些破绽是指这篇预印本的文章,还是也包括之前那篇(迪亚斯团队的)文章?

闻海虎:包括以前那篇文章。因为现在这篇预印本文章中的曲线和以前文章中的部分曲线看起来是类似的。

实验时使用的金刚石对顶砧。

总之,南大闻海虎教授仍然有3个质疑点:首先是认为涉及电阻转变太突然、太陡了。违反了超导现象的基本认知。


其次是文中显示的电极做得很糟糕,形状很不规范。
 

最后是电阻掉一下不能代表超导,还需要其他更本征的性质,特别是磁性质。


所以基于这三点,闻海虎教授认为Hemley的复现还远谈不上反转

对于这一系列科研成果,闻海虎教授表示我们现在离近常压室温超导这个目标还比较远,但是也不是说不能实现、朝着这个方向努力哪一天就实现了。“我们当然希望近常压室温超导是个真实现象,我们领域里面的每一位科学家都希望如此。但是你要用可靠的、容易重复的,大部分组都能重复的实验来证实这样一种重要的现象。

参考链接:

[1]https://www.nature.com/articles/s41586-023-05742-0

[2]https://arxiv.org/abs/2306.06301

[3]https://mp.weixin.qq.com/s/m8RnXohGqxLM8D1Q0VgdnQ

[4]https://mp.weixin.qq.com/s/H__5jUtk1Tcbg0Xq_CnXCg?scene=25#wechat_redirect

这篇关于又双叒反转?美国院士复现室温超导!的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/174508

相关文章

控制反转 的种类

之前对控制反转的定义和解释都不是很清晰。最近翻书发现在《Pro Spring 5》(免费电子版在文章最后)有一段非常不错的解释。记录一下,有道翻译贴出来方便查看。如有请直接跳过中文,看后面的原文。 控制反转的类型 控制反转的类型您可能想知道为什么有两种类型的IoC,以及为什么这些类型被进一步划分为不同的实现。这个问题似乎没有明确的答案;当然,不同的类型提供了一定程度的灵活性,但

Detectorn2预训练模型复现:数据准备、训练命令、日志分析与输出目录

Detectorn2预训练模型复现:数据准备、训练命令、日志分析与输出目录 在深度学习项目中,目标检测是一项重要的任务。本文将详细介绍如何使用Detectron2进行目标检测模型的复现训练,涵盖训练数据准备、训练命令、训练日志分析、训练指标以及训练输出目录的各个文件及其作用。特别地,我们将演示在训练过程中出现中断后,如何使用 resume 功能继续训练,并将我们复现的模型与Model Zoo中的

UMI复现代码运行逻辑全流程(一)——eval_real.py(尚在更新)

一、文件夹功能解析 全文件夹如下 其中,核心文件作用为: diffusion_policy:扩散策略核心文件夹,包含了众多模型及基础库 example:标定及配置文件 scripts/scripts_real:测试脚本文件,区别在于前者倾向于单体运行,后者为整体运行 scripts_slam_pipeline:orb_slam3运行全部文件 umi:核心交互文件夹,作用在于构建真

2024年AMC10美国数学竞赛倒计时两个月:吃透1250道真题和知识点(持续)

根据通知,2024年AMC10美国数学竞赛的报名还有两周,正式比赛还有两个月就要开始了。计划参赛的孩子们要记好时间,认真备考,最后冲刺再提高成绩。 那么如何备考2024年AMC10美国数学竞赛呢?做真题,吃透真题和背后的知识点是备考AMC8、AMC10有效的方法之一。通过做真题,可以帮助孩子找到真实竞赛的感觉,而且更加贴近比赛的内容,可以通过真题查漏补缺,更有针对性的补齐知识的短板。

文章解读与仿真程序复现思路——电力自动化设备EI\CSCD\北大核心《考虑燃料电池和电解槽虚拟惯量支撑的电力系统优化调度方法》

本专栏栏目提供文章与程序复现思路,具体已有的论文与论文源程序可翻阅本博主免费的专栏栏目《论文与完整程序》 论文与完整源程序_电网论文源程序的博客-CSDN博客https://blog.csdn.net/liang674027206/category_12531414.html 电网论文源程序-CSDN博客电网论文源程序擅长文章解读,论文与完整源程序,等方面的知识,电网论文源程序关注python

【vulhub】thinkphp5 2-rce 5.0.23-rce 5-rce 漏洞复现

2-rec 1.启动环境  cd /.../vulhub/thinkphp/2-rce # cd进入2-rce靶场文件环境下docker-compose up -d # docker-compose启动靶场docker ps -a # 查看开启的靶场信息 2.访问192.168.146.136:8080网页 3.构造payload http

MapReduce算法 – 反转排序(Order Inversion)

译者注:在刚开始翻译的时候,我将Order Inversion按照字面意思翻译成“反序”或者“倒序”,但是翻译完整篇文章之后,我感觉到,将Order Inversion翻译成反序模式是不恰当的,根据本文的内容,很显然,Inversion并非是将顺序倒排的意思,而是如同Spring的IOC一样,表明的是一种控制权的反转。Spring将对象的实例化责任从业务代码反转给了框架,而在本文的模式中,在map

【漏洞复现】赛蓝企业管理系统 GetJSFile 任意文件读取漏洞

免责声明:         本文内容旨在提供有关特定漏洞或安全漏洞的信息,以帮助用户更好地了解可能存在的风险。公布此类信息的目的在于促进网络安全意识和技术进步,并非出于任何恶意目的。阅读者应该明白,在利用本文提到的漏洞信息或进行相关测试时,可能会违反某些法律法规或服务协议。同时,未经授权地访问系统、网络或应用程序可能导致法律责任或其他严重后果。作者不对读者基于本文内容而产生的任何行为或后果承担

RAKsmart的美国大带宽服务器适合哪些行业?

RAKsmart的美国大带宽服务器适合多种行业,尤其是那些对带宽需求高、网络稳定性和速度要求较高的行业。下面将详细探讨这些行业的特点以及为何它们适合使用RAKsmart的大带宽服务器,rak小编为您整理发布。 1. 视频和流媒体服务行业    高带宽需求:视频流媒体服务如Netflix、YouTube及直播平台等需要大量的带宽来传输高清视频内容。RAKsmart提供的最高达10Gb

深度学习每周学习总结N9:transformer复现

🍨 本文为🔗365天深度学习训练营 中的学习记录博客🍖 原作者:K同学啊 | 接辅导、项目定制 目录 多头注意力机制前馈传播位置编码编码层解码层Transformer模型构建使用示例 本文为TR3学习打卡,为了保证记录顺序我这里写为N9 总结: 之前有学习过文本预处理的环节,对文本处理的主要方式有以下三种: 1:词袋模型(one-hot编码) 2:TF-I