透视、逆透视:R语言(reshape2、tidyverse),Excel,Python

2023-10-09 15:10

本文主要是介绍透视、逆透视:R语言(reshape2、tidyverse),Excel,Python,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

  • 总结(Python的pandas,R语言的reshape2、tidyr)
    在这里插入图片描述

  • R语言(reshape2、tidyverse)

数据来源:R语言实战第二版P106
在这里插入图片描述

library(tidyverse)
library(reshape2)# 透视、逆透视
# R语言实战第二版P106
# https://r4ds.had.co.nz/
# https://bookdown.org/Maxine/r4ds/
# https://bookdown.org/Maxine/r4ds/pivoting.html# sqldf     https://blog.csdn.net/yunru_yang/article/details/60749026
# reshape2  https://www.jianshu.com/p/36f5268e932c
# tidyr     https://www.jianshu.com/p/46a53717d964# melt(融)变长pivot_longer(逆透)列名:组合新名
# dcast(拆)变宽pivot_wider(透视)列名:组内变量# mydata <- cbind(ID, Time, X1, X2) %>% data.frame(); mydata
mydata <- readxl::read_excel("WPS Cloud Files/368440790/pivot.xlsx", sheet = "Sheet4"); mydata# 变长
md <- mydata %>% melt(id.vars = c("ID","Time")); md
mydata %>% pivot_longer(cols = c("X1","X2"), names_to = "variable") %>% arrange(variable)# 变宽
md %>% dcast(ID+Time~variable, value.var = "value")
md %>% pivot_wider(id_cols = c(ID, Time), names_from = variable, values_from = value)# 变宽(汇总依据 = mean)
md %>% dcast(ID~variable, value.var = "value", fun.aggregate = mean)
md %>% pivot_wider(id_cols = ID, names_from = variable, values_from = value, values_fn = mean)
  • Python
# pivot 初级重组
# pivot_table 数值处理
# melt 逆透变长# 导入Excel https://zhuanlan.zhihu.com/p/88653839
# 透视表 https://blog.csdn.net/weixin_31669073/article/details/112217335
# https://blog.csdn.net/AaronPaul/article/details/106682486
# https://blog.csdn.net/shine4869/article/details/105635203
# https://www.cnblogs.com/zlslch/p/8644585.html
# https://zhuanlan.zhihu.com/p/54066705
# https://pandas.pydata.org/pandas-docs/stable/index.html
from pandas import *mydata = read_excel("e:pivot.xlsx", sheet_name = "Sheet4") # header, name, index_col
mydatamd = mydata.melt(id_vars = ["ID", "Time"],value_vars = ["X1", "X2"],var_name = "variable",value_name = "value"); mdmd.pivot(index = ["ID", "Time"],columns = "variable",values = "value")md.pivot_table(index = ["ID", "Time"],columns = "variable",values = "value")md.pivot_table(index = ["ID"],columns = "variable",values = "value",aggfunc = ["mean","sum"])
  • Excel数据透视表的组合分段方法:

在这里插入图片描述

  • SQL

https://www.jianshu.com/p/afad4da7d5a8

这篇关于透视、逆透视:R语言(reshape2、tidyverse),Excel,Python的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/173708

相关文章

使用Python删除Excel中的行列和单元格示例详解

《使用Python删除Excel中的行列和单元格示例详解》在处理Excel数据时,删除不需要的行、列或单元格是一项常见且必要的操作,本文将使用Python脚本实现对Excel表格的高效自动化处理,感兴... 目录开发环境准备使用 python 删除 Excphpel 表格中的行删除特定行删除空白行删除含指定

深入理解Go语言中二维切片的使用

《深入理解Go语言中二维切片的使用》本文深入讲解了Go语言中二维切片的概念与应用,用于表示矩阵、表格等二维数据结构,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起学习学习吧... 目录引言二维切片的基本概念定义创建二维切片二维切片的操作访问元素修改元素遍历二维切片二维切片的动态调整追加行动态

Python通用唯一标识符模块uuid使用案例详解

《Python通用唯一标识符模块uuid使用案例详解》Pythonuuid模块用于生成128位全局唯一标识符,支持UUID1-5版本,适用于分布式系统、数据库主键等场景,需注意隐私、碰撞概率及存储优... 目录简介核心功能1. UUID版本2. UUID属性3. 命名空间使用场景1. 生成唯一标识符2. 数

Python办公自动化实战之打造智能邮件发送工具

《Python办公自动化实战之打造智能邮件发送工具》在数字化办公场景中,邮件自动化是提升工作效率的关键技能,本文将演示如何使用Python的smtplib和email库构建一个支持图文混排,多附件,多... 目录前言一、基础配置:搭建邮件发送框架1.1 邮箱服务准备1.2 核心库导入1.3 基础发送函数二、

Python包管理工具pip的升级指南

《Python包管理工具pip的升级指南》本文全面探讨Python包管理工具pip的升级策略,从基础升级方法到高级技巧,涵盖不同操作系统环境下的最佳实践,我们将深入分析pip的工作原理,介绍多种升级方... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

基于Python实现一个图片拆分工具

《基于Python实现一个图片拆分工具》这篇文章主要为大家详细介绍了如何基于Python实现一个图片拆分工具,可以根据需要的行数和列数进行拆分,感兴趣的小伙伴可以跟随小编一起学习一下... 简单介绍先自己选择输入的图片,默认是输出到项目文件夹中,可以自己选择其他的文件夹,选择需要拆分的行数和列数,可以通过

Python中反转字符串的常见方法小结

《Python中反转字符串的常见方法小结》在Python中,字符串对象没有内置的反转方法,然而,在实际开发中,我们经常会遇到需要反转字符串的场景,比如处理回文字符串、文本加密等,因此,掌握如何在Pyt... 目录python中反转字符串的方法技术背景实现步骤1. 使用切片2. 使用 reversed() 函

Python中将嵌套列表扁平化的多种实现方法

《Python中将嵌套列表扁平化的多种实现方法》在Python编程中,我们常常会遇到需要将嵌套列表(即列表中包含列表)转换为一个一维的扁平列表的需求,本文将给大家介绍了多种实现这一目标的方法,需要的朋... 目录python中将嵌套列表扁平化的方法技术背景实现步骤1. 使用嵌套列表推导式2. 使用itert

使用Docker构建Python Flask程序的详细教程

《使用Docker构建PythonFlask程序的详细教程》在当今的软件开发领域,容器化技术正变得越来越流行,而Docker无疑是其中的佼佼者,本文我们就来聊聊如何使用Docker构建一个简单的Py... 目录引言一、准备工作二、创建 Flask 应用程序三、创建 dockerfile四、构建 Docker

Python使用vllm处理多模态数据的预处理技巧

《Python使用vllm处理多模态数据的预处理技巧》本文深入探讨了在Python环境下使用vLLM处理多模态数据的预处理技巧,我们将从基础概念出发,详细讲解文本、图像、音频等多模态数据的预处理方法,... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核