PSP - AlphaFold2 的 2.3.2 版本源码解析 (1)

2023-10-09 12:50

本文主要是介绍PSP - AlphaFold2 的 2.3.2 版本源码解析 (1),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

欢迎关注我的CSDN:https://spike.blog.csdn.net/
本文地址:https://blog.csdn.net/caroline_wendy/article/details/130323566

时间:2023.4.22

官网:https://github.com/deepmind/alphafold

AlphaFold2是一种基于深度学习的方法,根据氨基酸序列预测蛋白质的三维结构。在2020年的CASP14竞赛中取得了突破性的成绩,达到了原子级的精度。AlphaFold2的核心是Evoformer模块,利用多序列比对(MSA)和残基对特征,来捕捉蛋白质的共进化信息和物理约束。Evoformer的输出被送入一个结构模块,使用注意力机制和几何约束来生成蛋白质的骨架和侧链坐标。AlphaFold2的源代码和预训练模型已经公开发布,为蛋白质结构预测领域带来了新的机遇和挑战。

AF2

AlphaFold版本2.3.2+:

commit 4d83e3fc0883011e3d597eb6d33e532267754708 (HEAD, origin/main, origin/HEAD)
Author: Hamish Tomlinson <htomlinson@google.com>
Date:   Tue Apr 11 02:22:30 2023 -0700Bump version to 2.3.2 in setup.py and colab.PiperOrigin-RevId: 523341685Change-Id: Ie332a4db056adb2d42bcd2f4006e4258b8908507commit 3f31725591b0c6b0b6d63214235d3abe6b81742c (tag: v2.3.2)
Author: Hamish Tomlinson <htomlinson@google.com>
Date:   Mon Mar 27 04:50:17 2023 -0700Upgrade pyopenssl in colab.PiperOrigin-RevId: 519687065Change-Id: Ib72232f3f4d09ee8f3a2cc312d7a83d8b892a23e

输入序列117个氨基酸的序列,即CASP15的T1104序列:

>T1104 EntV136 , Enterococcus faecalis, 117 residues|
QLEDSEVEAVAKGLEEMYANGVTEDNFKNYVKNNFAQQEISSVEEELNVNISDSCVANKIKDEFFAMISISAIVKAAQKKAWKELAVTVLRFAKANGLKTNAIIVAGQLALWAVQCG

1. 入口函数

脚本:run_alphafold.py

  • 单链使用 pipeline.DataPipeline() 类,多链使用 pipeline_multimer.DataPipeline() 类,关注单链逻辑。
  • 核心逻辑位于run_alphafold.py#predict_structure()

源码如下:

monomer_data_pipeline = pipeline.DataPipeline(jackhmmer_binary_path=FLAGS.jackhmmer_binary_path,hhblits_binary_path=FLAGS.hhblits_binary_path,uniref90_database_path=FLAGS.uniref90_database_path,mgnify_database_path=FLAGS.mgnify_database_path,bfd_database_path=FLAGS.bfd_database_path,uniref30_database_path=FLAGS.uniref30_database_path,small_bfd_database_path=FLAGS.small_bfd_database_path,template_searcher=template_searcher,template_featurizer=template_featurizer,use_small_bfd=use_small_bfd,use_precomputed_msas=FLAGS.use_precomputed_msas)
...
data_pipeline = monomer_data_pipeline
...
for i, fasta_path in enumerate(FLAGS.fasta_paths):fasta_name = fasta_names[i]predict_structure(fasta_path=fasta_path,fasta_name=fasta_name,output_dir_base=FLAGS.output_dir,data_pipeline=data_pipeline,model_runners=model_runners,amber_relaxer=amber_relaxer,benchmark=FLAGS.benchmark,random_seed=random_seed,models_to_relax=FLAGS.models_to_relax)

predict_structure()中,AF2完成全部的结构预测过程,核心逻辑位于data_pipeline.process(),输入fasta文件和MSA路径,位于alphafold/data/pipeline.py#process()

源码如下:

def predict_structure(fasta_path: str,fasta_name: str,output_dir_base: str,data_pipeline: Union[pipeline.DataPipeline, pipeline_multimer.DataPipeline],model_runners: Dict[str, model.RunModel],amber_relaxer: relax.AmberRelaxation,benchmark: bool,random_seed: int,models_to_relax: ModelsToRelax):"""Predicts structure using AlphaFold for the given sequence."""...feature_dict = data_pipeline.process(input_fasta_path=fasta_path,msa_output_dir=msa_output_dir)...

alphafold/data/pipeline.py#process()中,核心逻辑是:

  1. 搜索MSA和Template,其中,MSA搜索UniRef90、BFD、MGnify三个库,Template搜索pdb70pdb_seqres两个文件,PDB库在RCSB的mmcif中查找。
  2. 初始化三类特征,之后再进行更新,即序列特征(make_sequence_features)、MSA特征(make_msa_features)、Template特征(get_templates)。

源码如下:

  def process(self, input_fasta_path: str, msa_output_dir: str) -> FeatureDict:"""Runs alignment tools on the input sequence and creates features."""with open(input_fasta_path) as f:input_fasta_str = f.read()input_seqs, input_descs = parsers.parse_fasta(input_fasta_str)if len(input_seqs) != 1:raise ValueError(f'More than one input sequence found in {input_fasta_path}.')input_sequence = input_seqs[0]input_description = input_descs[0]num_res = len(input_sequence)uniref90_out_path = os.path.join(msa_output_dir, 'uniref90_hits.sto')jackhmmer_uniref90_result = run_msa_tool(msa_runner=self.jackhmmer_uniref90_runner,input_fasta_path=input_fasta_path,msa_out_path=uniref90_out_path,msa_format='sto',use_precomputed_msas=self.use_precomputed_msas,max_sto_sequences=self.uniref_max_hits)mgnify_out_path = os.path.join(msa_output_dir, 'mgnify_hits.sto')jackhmmer_mgnify_result = run_msa_tool(msa_runner=self.jackhmmer_mgnify_runner,input_fasta_path=input_fasta_path,msa_out_path=mgnify_out_path,msa_format='sto',use_precomputed_msas=self.use_precomputed_msas,max_sto_sequences=self.mgnify_max_hits)msa_for_templates = jackhmmer_uniref90_result['sto']msa_for_templates = parsers.deduplicate_stockholm_msa(msa_for_templates)msa_for_templates = parsers.remove_empty_columns_from_stockholm_msa(msa_for_templates)if self.template_searcher.input_format == 'sto':pdb_templates_result = self.template_searcher.query(msa_for_templates)elif self.template_searcher.input_format == 'a3m':uniref90_msa_as_a3m = parsers.convert_stockholm_to_a3m(msa_for_templates)pdb_templates_result = self.template_searcher.query(uniref90_msa_as_a3m)else:raise ValueError('Unrecognized template input format: 'f'{self.template_searcher.input_format}')pdb_hits_out_path = os.path.join(msa_output_dir, f'pdb_hits.{self.template_searcher.output_format}')with open(pdb_hits_out_path, 'w') as f:f.write(pdb_templates_result)uniref90_msa = parsers.parse_stockholm(jackhmmer_uniref90_result['sto'])mgnify_msa = parsers.parse_stockholm(jackhmmer_mgnify_result['sto'])pdb_template_hits = self.template_searcher.get_template_hits(output_string=pdb_templates_result, input_sequence=input_sequence)if self._use_small_bfd:bfd_out_path = os.path.join(msa_output_dir, 'small_bfd_hits.sto')jackhmmer_small_bfd_result = run_msa_tool(msa_runner=self.jackhmmer_small_bfd_runner,input_fasta_path=input_fasta_path,msa_out_path=bfd_out_path,msa_format='sto',use_precomputed_msas=self.use_precomputed_msas)bfd_msa = parsers.parse_stockholm(jackhmmer_small_bfd_result['sto'])else:bfd_out_path = os.path.join(msa_output_dir, 'bfd_uniref_hits.a3m')hhblits_bfd_uniref_result = run_msa_tool(msa_runner=self.hhblits_bfd_uniref_runner,input_fasta_path=input_fasta_path,msa_out_path=bfd_out_path,msa_format='a3m',use_precomputed_msas=self.use_precomputed_msas)bfd_msa = parsers.parse_a3m(hhblits_bfd_uniref_result['a3m'])templates_result = self.template_featurizer.get_templates(query_sequence=input_sequence,hits=pdb_template_hits)sequence_features = make_sequence_features(sequence=input_sequence,description=input_description,num_res=num_res)msa_features = make_msa_features((uniref90_msa, bfd_msa, mgnify_msa))logging.info('Uniref90 MSA size: %d sequences.', len(uniref90_msa))logging.info('BFD MSA size: %d sequences.', len(bfd_msa))logging.info('MGnify MSA size: %d sequences.', len(mgnify_msa))logging.info('Final (deduplicated) MSA size: %d sequences.',msa_features['num_alignments'][0])logging.info('Total number of templates (NB: this can include bad ''templates and is later filtered to top 4): %d.',templates_result.features['template_domain_names'].shape[0])return {**sequence_features, **msa_features, **templates_result.features}

2. 初始化序列特征

核心逻辑alphafold/data/pipeline.py#make_sequence_features(),逻辑简单:

  • 输入:序列、描述、序列长度(残基个数)
  • 输出:aatype(氨基酸类型)、between_segment_residues(片段残基之间)、domain_name(序列描述)、residue_index(残基索引)、seq_length(序列长度)、sequence(序列)

一般而言,在CASP15中,序列都是一个域(domain),因此,序列描述使用 domain_name 表示。

调用过程,源码如下:

input_sequence = input_seqs[0]
input_description = input_descs[0]
num_res = len(input_sequence)sequence_features = make_sequence_features(sequence=input_sequence,description=input_description,num_res=num_res)

生成序列特征,源码如下:

def make_sequence_features(sequence: str, description: str, num_res: int) -> FeatureDict:"""Constructs a feature dict of sequence features."""features = {}features['aatype'] = residue_constants.sequence_to_onehot(sequence=sequence,mapping=residue_constants.restype_order_with_x,map_unknown_to_x=True)features['between_segment_residues'] = np.zeros((num_res,), dtype=np.int32)features['domain_name'] = np.array([description.encode('utf-8')],dtype=np.object_)features['residue_index'] = np.array(range(num_res), dtype=np.int32)features['seq_length'] = np.array([num_res] * num_res, dtype=np.int32)features['sequence'] = np.array([sequence.encode('utf-8')], dtype=np.object_)return features

在序列特征中,以序列长度117为例,包括6类特征,具体输出,如下:

  1. aatype(氨基酸类型):(117, 21),数据one-hot类型,21维,即20个残基 + 1个X未知,其中,117是序列长度。
  2. between_segment_residues(片段残基之间):(117,),全0列表。
  3. domain_name(序列描述):(1,),FASTA的描述。
array([b'T1104 EntV136 , Enterococcus faecalis, 117 residues|'], dtype=object)
  1. residue_index(残基索引):(117,),残基索引,0-116的数字排列。
array([  0,   1,   2,   3,   4,   5,   6,   7,   8,   9,  10,  11,  12,13,  14,  15,  16,  17,  18,  19,  20,  21,  22,  23,  24,  25,26,  27,  28,  29,  30,  31,  32,  33,  34,  35,  36,  37,  38,39,  40,  41,  42,  43,  44,  45,  46,  47,  48,  49,  50,  51,52,  53,  54,  55,  56,  57,  58,  59,  60,  61,  62,  63,  64,65,  66,  67,  68,  69,  70,  71,  72,  73,  74,  75,  76,  77,78,  79,  80,  81,  82,  83,  84,  85,  86,  87,  88,  89,  90,91,  92,  93,  94,  95,  96,  97,  98,  99, 100, 101, 102, 103,104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116],dtype=int32)
  1. seq_length(序列长度):(117,),序列长度,数值都是117。
  2. sequence(序列):即输入序列。
array([b'QLEDSEVEAVAKGLEEMYANGVTEDNFKNYVKNNFAQQEISSVEEELNVNISDSCVANKIKDEFFAMISISAIVKAAQKKAWKELAVTVLRFAKANGLKTNAIIVAGQLALWAVQCG'], dtype=object)

3. 初始化MSA特征

核心逻辑alphafold/data/pipeline.py#make_msa_features(),调用过程:

msa_features = make_msa_features((uniref90_msa, bfd_msa, mgnify_msa))

3.1 搜索和解析MSA

make_msa_features函数,输入包括3个不同库的MSA文件,即UniRef90、MGnify、BFD,其中BFD可选规模的大小。

  • UniRef90:包含1.3亿条氨基酸序列的数据库,通过将 UniProtKB 和其他来源的序列按照 90% 的相似度聚类而生成的,占用空间约为30GB。
  • MGnify (MetaGenomics Unify) :包含10亿条氨基酸序列的数据库,属于微生物宏基因组学(MetaGenomics),来源于环境样本中DNA的测序和分析,占用空间约为100GB。
  • BFD (Big Fantastic Database) :包含25亿条氨基酸序列的数据库,通过对多种来源的蛋白质结构和序列进行整合而生成的,占用空间约为2.5TB。

源码如下:

uniref90_msa = parsers.parse_stockholm(jackhmmer_uniref90_result['sto'])
mgnify_msa = parsers.parse_stockholm(jackhmmer_mgnify_result['sto'])
if self._use_small_bfd:bfd_msa = parsers.parse_stockholm(jackhmmer_small_bfd_result['sto'])
else:bfd_msa = parsers.parse_a3m(hhblits_bfd_uniref_result['a3m'])

其中,UniRef90和MGnify都是使用jackhmmer进行搜索,而大规模BFD使用hhblits,小规模BFD使用jackhmmer。

对于搜索出的MSA序列,再进行解析和清洗,保持格式一致,即去除没有对齐的残基,保证序列长度与输入序列一致,同时,保留删除的位置(deletion_matrix)。参考alphafold/data/parsers.py#parse_a3m()&parse_stockholm(),源码如下:

  # parse_a3m()return Msa(sequences=aligned_sequences,deletion_matrix=deletion_matrix,descriptions=descriptions)# parse_stockholm()return Msa(sequences=msa,deletion_matrix=deletion_matrix,descriptions=list(name_to_sequence.keys()))

其中,输出的MSA,包括2类格式,即a3m和sto。a3m格式,第1个是输入序列,其他是搜索序列,需要删除小写字母才能与输入序列保持一致,如下:

>T1104 EntV136 , Enterococcus faecalis, 117 residues|
QLEDSEVEAVAKGLEEMYANGVTEDNFKNYVKNNFAQQEISSVEEELNVNISDSCVANKIKDEFFAMISISAIVKAAQKKAWKELAVTVLRFAKANGLKTNAIIVAGQLALWAVQCG
>Q6DRR6 107     0.440   9.748E-24       1       116     117     42      175     179
-IEEQrQIDEVAAVLEKMFADGVTEENLKQYAQANYSEEELIIADNELNTNlsqiqdenaimykvDWgalGNCMANKIKDELLAMISVGTIIKYAQKKAWKELAKIVIKYVAKAGVKTNAALIAGQLAIWGLQCG
>U6S4W9 107     0.871   9.748E-24       0       116     117     57      188     191
QLEDSEVEAVAKGLEEMYANGVTEDNFKNYVKNNFAQQEISSVEEELNVNIsdastvvqarfnWNalgSCVANKIKDEFFAMISISAIVKAAQKKAWKELAVTVLRFAKANGLKTNAIIVAGQLALWAVQCG

sto格式,sto即Stockholm,多序列比对(MSA)格式,第一块是查询结果,第二块是所有匹配目标序列的比对结果,如下:

# STOCKHOLM 1.0
#=GF ID 7c5664d51e2f56827f5232132517161a-i1
#=GF AU jackhmmer (HMMER 3.3.2)#=GS tr|A0A1X3AJN2|A0A1X3AJN2_ENTFL/18-73   DE [subseq from] Streptococcin A-M57 OS=Enterococcus faecalis OX=1351 GN=ELS84_1737 PE=4 SV=1
#=GS tr|A0A1X3AJN2|A0A1X3AJN2_ENTFL/75-149  DE [subseq from] Streptococcin A-M57 OS=Enterococcus faecalis OX=1351 GN=ELS84_1737 PE=4 SV=1
...
T1104 EntV136 , Enterococcus faecalis, 117 residues|               QLEDSEVEAVAKGLEEMYANGV--TEDNF---K---NYVKNNFAQQEIS---------------S-----VEEELNV--------NISD-----------S-------------CVANKIKDEFFAMISISAIVKAAQKKAWKELAVTVLRFAKANGLKTNAIIVAGQLALWAVQCG
tr|A0A1X3AJN2|A0A1X3AJN2_ENTFL/18-73           										 QLEDSEVEAVAKGLEEMYANGV--TEDNF---K---NYVKNNFAQQEIS---------------S-----VEEELNV--------NISD-----------A-------------ST-------------------------------------------------------------
#=GR tr|A0A1X3AJN2|A0A1X3AJN2_ENTFL/18-73   PP 89********************..*****...*...*************...............*.....*******........****...........8.............64.............................................................
tr|A0A1X3AJN2|A0A1X3AJN2_ENTFL/75-149          										 ----------------------------------------------------------------------VQARFNW--------NALG-----------S-------------CVANKIKDEFFAMISISAIVKAAQKKAWKELAVTVLRFAKANGLKTNAIIVAGQLALWAVQCG
#=GR tr|A0A1X3AJN2|A0A1X3AJN2_ENTFL/75-149  PP ......................................................................6678899........99**...........*.............**************************************************************9

3.2 计算MSA特征

核心逻辑alphafold/data/pipeline.py#make_msa_features()

  1. 通过集合去重,即seen_sequences = set()
  2. 输出特征。

在MSA特征中,以序列长度117、MSA数量151为例,包括4类特征,具体输出如下:

  1. deletion_matrix_int,因序列对齐所删除的残基矩阵,(151, 117),稀疏矩阵,0较多,只保留连续个数,例如:
# 序列
-----DAKEVAEQLEFIFEEAAIKDiNDKiigldiEMIEEKYGPGaELQQLKEEMN---------------------------------------------------------------------
# deletion vec
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
  1. msa,残基索引矩阵,(151, 117),例如:
array([[21, 21,  3, ..., 13,  1,  5],[13,  9,  3, ..., 13,  1,  5],[13,  7,  8, ..., 13,  1,  5],...,[21, 21, 21, ..., 18,  1, 21],[21, 21, 21, ..., 21, 21, 21],[21, 21, 21, ..., 21, 21, 21]], dtype=int32)
  1. num_alignments,MSA的序列数量矩阵,例如:
array([151, 151, 151, 151, 151, 151, 151, 151, 151, 151, 151, 151, 151,151, 151, 151, 151, 151, 151, 151, 151, 151, 151, 151, 151, 151,151, 151, 151, 151, 151, 151, 151, 151, 151, 151, 151, 151, 151,151, 151, 151, 151, 151, 151, 151, 151, 151, 151, 151, 151, 151,151, 151, 151, 151, 151, 151, 151, 151, 151, 151, 151, 151, 151,151, 151, 151, 151, 151, 151, 151, 151, 151, 151, 151, 151, 151,151, 151, 151, 151, 151, 151, 151, 151, 151, 151, 151, 151, 151,151, 151, 151, 151, 151, 151, 151, 151, 151, 151, 151, 151, 151,151, 151, 151, 151, 151, 151, 151, 151, 151, 151, 151, 151, 151],dtype=int32)
  1. msa_species_identifiers,序列物种标识,sto格式的具备物种标识,通过正则获取,例如:tr|A0A146SKV9|A0A146SKV9_FUNHE
    • 参考:alphafold/data/msa_identifiers.py#_parse_sequence_identifier()

源码:

def make_msa_features(msas: Sequence[parsers.Msa]) -> FeatureDict:"""Constructs a feature dict of MSA features."""if not msas:raise ValueError('At least one MSA must be provided.')int_msa = []deletion_matrix = []species_ids = []seen_sequences = set()for msa_index, msa in enumerate(msas):if not msa:raise ValueError(f'MSA {msa_index} must contain at least one sequence.')for sequence_index, sequence in enumerate(msa.sequences):if sequence in seen_sequences:continueseen_sequences.add(sequence)int_msa.append([residue_constants.HHBLITS_AA_TO_ID[res] for res in sequence])deletion_matrix.append(msa.deletion_matrix[sequence_index])identifiers = msa_identifiers.get_identifiers(msa.descriptions[sequence_index])species_ids.append(identifiers.species_id.encode('utf-8'))num_res = len(msas[0].sequences[0])num_alignments = len(int_msa)features = {}features['deletion_matrix_int'] = np.array(deletion_matrix, dtype=np.int32)features['msa'] = np.array(int_msa, dtype=np.int32)features['num_alignments'] = np.array([num_alignments] * num_res, dtype=np.int32)features['msa_species_identifiers'] = np.array(species_ids, dtype=np.object_)return features

4. 初始化Template特征

调用逻辑:

  1. 搜索MSA,使用jackhmmer,搜索uniref90,复用MSA部分的逻辑。
  2. 清洗MSA,去除重复数据(deduplicate_stockholm_msa)、删除空列(remove_empty_columns_from_stockholm_msa)。
  3. 搜索Template,搜索库jackhmmer_uniref90
  4. template_searcher提取Template信息。
  5. template_featurizer获取Template结果。

初始化Template特征,相关的源码,如下:

# 搜索MSA
uniref90_out_path = os.path.join(msa_output_dir, 'uniref90_hits.sto')
jackhmmer_uniref90_result = run_msa_tool(msa_runner=self.jackhmmer_uniref90_runner, input_fasta_path=input_fasta_path,msa_out_path=uniref90_out_path, msa_format='sto', use_precomputed_msas=self.use_precomputed_msas, max_sto_sequences=self.uniref_max_hits)# 清洗MSA
msa_for_templates = jackhmmer_uniref90_result['sto']
msa_for_templates = parsers.deduplicate_stockholm_msa(msa_for_templates)
msa_for_templates = parsers.remove_empty_columns_from_stockholm_msa(msa_for_templates)# 搜索Template
if self.template_searcher.input_format == 'sto':pdb_templates_result = self.template_searcher.query(msa_for_templates)
elif self.template_searcher.input_format == 'a3m':uniref90_msa_as_a3m = parsers.convert_stockholm_to_a3m(msa_for_templates)pdb_templates_result = self.template_searcher.query(uniref90_msa_as_a3m)
else:raise ValueError('Unrecognized template input format: f'{self.template_searcher.input_format}')# 提取Template信息
pdb_template_hits = self.template_searcher.get_template_hits(output_string=pdb_templates_result, input_sequence=input_sequence)# 获取Template结果
templates_result = self.template_featurizer.get_templates(query_sequence=input_sequence, hits=pdb_template_hits)

4.1 清洗Template的MSA

其中,去除重复数据,deduplicate_stockholm_msa函数,具体:

  1. 源码:alphafold/data/parsers.py#deduplicate_stockholm_msa()
  2. 根据 query_align 设置 mask 信息。
  3. 根据 mask 信息,压缩搜索出的 alignment,使用set进行过滤
  4. 提取过滤之后的行。

源码:

...
seen_sequences = set()
seqnames = set()
# First alignment is the query.
query_align = next(iter(sequence_dict.values()))
mask = [c != '-' for c in query_align]  # Mask is False for insertions.
for seqname, alignment in sequence_dict.items():# Apply mask to remove all insertions from the string.masked_alignment = ''.join(itertools.compress(alignment, mask))if masked_alignment in seen_sequences:continueelse:seen_sequences.add(masked_alignment)seqnames.add(seqname)
...

搜索出101个Template,进行去除重复,由101个Template下降为34个Template。示例如下:

# 输入
QLEDSEVEAVAKGLEEMYANGV--TEDNF---K---NYVKNNFAQQEIS---------------S-----VEEELNV--------NISD-----------S-------------CVANKIKDEFFAMISISAIVKAAQKKAWKELAVTVLRFAKANGLKTNAIIVAGQLALWAVQCG
# 压缩
QLEDSEVEAVAKGLEEMYANGVTEDNFKNYVKNNFAQQEISSVEEELNVNISDSCVANKIKDEFFAMISISAIVKAAQKKAWKELAVTVLRFAKANGLKTNAIIVAGQLALWAVQCG# 输入
QLEDSEVEAVAKGLEEMYANGV--TEDNF---K---NYVKNNFAQQEIS---------------S-----VEEELNV--------NISD-----------A-------------ST-------------------------------------------------------------
# 压缩
QLEDSEVEAVAKGLEEMYANGVTEDNFKNYVKNNFAQQEISSVEEELNVNISDAST-------------------------------------------------------------

其中,删除空列,remove_empty_columns_from_stockholm_msa函数。

  • 源码位于:alphafold/data/parsers.py#remove_empty_columns_from_stockholm_msa()
  • 根据最后一列的#=GC RF标识符进行处理,删除不需要的列,用于不同query的Template融合。

源码如下:

def remove_empty_columns_from_stockholm_msa(stockholm_msa: str) -> str:"""Removes empty columns (dashes-only) from a Stockholm MSA."""processed_lines = {}unprocessed_lines = {}for i, line in enumerate(stockholm_msa.splitlines()):if line.startswith('#=GC RF'):reference_annotation_i = ireference_annotation_line = line
...

输入34个Template,输出34个Template。示例如下:

7c5664d51e2f56827f5232132517161a               QLEDSEVEAVAKGLEEMYANGV--TEDNF---K---NYVKNNFAQQEIS---------------S-----VEEELNV--------NISD-----------S-------------CVANKIKDEFFAMISISAIVKAAQKKAWKELAVTVLRFAKANGLKTNAIIVAGQLALWAVQCG
tr|A0A1X3AJN2|A0A1X3AJN2_ENTFL/18-73           QLEDSEVEAVAKGLEEMYANGV--TEDNF---K---NYVKNNFAQQEIS---------------S-----VEEELNV--------NISD-----------A-------------ST-------------------------------------------------------------
...
#=GC RF                                        xxxxxxxxxxxxxxxxxxxxxx..xxxxx...x...xxxxxxxxxxxxx...............x.....xxxxxxx........xxxx...........x.............xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
//

4.2 搜索和提取Template

其中,根据template_searcher的类型不同,搜索方式也不同:

  • 在multimer中,使用hmmsearch.Hmmsearch,输入格式是sto,pdb_seqres是PDB的数据集的序列结果。
  • 在monomer中,使用hhsearch.HHSearch,输入格式是a3m,搜索pdb70_database_path,即PDB70。
  • 搜索来源不同,搜索方式不同。

源码如下:run_alphafold.py

if run_multimer_system:template_searcher = hmmsearch.Hmmsearch(binary_path=FLAGS.hmmsearch_binary_path, hmmbuild_binary_path=FLAGS.hmmbuild_binary_path, atabase_path=FLAGS.pdb_seqres_database_path)template_featurizer = templates.HmmsearchHitFeaturizer(mmcif_dir=FLAGS.template_mmcif_dir, ...)
else:template_searcher = hhsearch.HHSearch(binary_path=FLAGS.hhsearch_binary_path, databases=[FLAGS.pdb70_database_path])template_featurizer = templates.HhsearchHitFeaturizer(mmcif_dir=FLAGS.template_mmcif_dir, ...)

具体而言,pdb_seqres是PDB的数据集,参考AlphaFold-Multimer - Protein complex prediction with AlphaFold-Multimer

pdb_seqres

搜索之后,使用template_featurizer,提取特征,搜索库都是mmcif,即199,000的PDB蛋白库,格式是cif。

逻辑位于alphafold/data/templates.py#HhsearchHitFeaturizer,源码如下:

TEMPLATE_FEATURES = {'template_aatype': np.float32,'template_all_atom_masks': np.float32,'template_all_atom_positions': np.float32,'template_domain_names': object,'template_sequence': object,'template_sum_probs': np.float32,
}
...
class HhsearchHitFeaturizer(TemplateHitFeaturizer):"""A class for turning a3m hits from hhsearch to template features."""def get_templates(self,query_sequence: str,hits: Sequence[parsers.TemplateHit]) -> TemplateSearchResult:"""Computes the templates for given query sequence (more details above)."""logging.info('Searching for template for: %s', query_sequence)template_features = {}for template_feature_name in TEMPLATE_FEATURES:template_features[template_feature_name] = []...for hit in sorted(hits, key=lambda x: x.sum_probs, reverse=True):# We got all the templates we wanted, stop processing hits.if num_hits >= self._max_hits:breakresult = _process_single_hit(query_sequence=query_sequence,hit=hit,mmcif_dir=self._mmcif_dir,max_template_date=self._max_template_date,release_dates=self._release_dates,obsolete_pdbs=self._obsolete_pdbs,strict_error_check=self._strict_error_check,kalign_binary_path=self._kalign_binary_path)...return TemplateSearchResult(features=template_features, errors=errors, warnings=warnings)

核心在于alphafold/data/templates.py#_process_single_hit(),源码如下:

features, realign_warning = _extract_template_features(mmcif_object=parsing_result.mmcif_object,pdb_id=hit_pdb_code,mapping=mapping,template_sequence=template_sequence,query_sequence=query_sequence,template_chain_id=hit_chain_id,kalign_binary_path=kalign_binary_path)
if hit.sum_probs is None:features['template_sum_probs'] = [0]
else:features['template_sum_probs'] = [hit.sum_probs]

调用_extract_template_features提取Template特征:

Parses atom positions in the target structure and aligns with the query.Atoms for each residue in the template structure are indexed to coincide with their corresponding residue in the query sequence, according to the alignment mapping provided.

解析目标结构中的原子位置,并与查询对齐。模板结构中的每个残基的原子都按照所提供的对齐映射,与查询序列中的相应残基一一对应。

输出特征:

  return ({'template_all_atom_positions': np.array(templates_all_atom_positions),'template_all_atom_masks': np.array(templates_all_atom_masks),'template_sequence': output_templates_sequence.encode(),'template_aatype': np.array(templates_aatype),'template_domain_names': f'{pdb_id.lower()}_{chain_id}'.encode(),},warning)

在Template特征中,以序列长度117、Template数量20为例,包括6类特征,具体输出如下:

  1. template_all_atom_positions,模板全部原子坐标,[N_tmpl, N_res, 37, 3],初始值是0,有坐标就设置为坐标值。

全部原子类型是37个:

atom_types = ['N', 'CA', 'C', 'CB', 'O', 'CG', 'CG1', 'CG2', 'OG', 'OG1', 'SG', 'CD','CD1', 'CD2', 'ND1', 'ND2', 'OD1', 'OD2', 'SD', 'CE', 'CE1', 'CE2', 'CE3','NE', 'NE1', 'NE2', 'OE1', 'OE2', 'CH2', 'NH1', 'NH2', 'OH', 'CZ', 'CZ2','CZ3', 'NZ', 'OXT'
] # := 37.

来源于:

all_atom_positions, all_atom_mask = _get_atom_positions(mmcif_object, chain_id, max_ca_ca_distance=150.0)pos[residue_constants.atom_order[atom_name]] = [x, y, z]
mask[residue_constants.atom_order[atom_name]] = 1.0
  1. templates_all_atom_masks,模版全部原子Mask,[N_tmpl, N_res, 37],初始值是0,有坐标就设置为1。

  2. template_sequence,模版序列,[N_tmpl],例如:

 output_templates_sequence = ''.join(output_templates_sequence)'template_sequence': output_templates_sequence.encode(),# output
array([b'QLEDSEVEAVAKGLEEMYANGVTEDNFKNYVKNNFAQQEISSVEEELNVNISDSCVANKIKDEFFAMISISAIVKAAQKKAWKELAVTVLRFAKANGLKTNAIIVAGQLALWAVQCG',...dtype=object)
  1. template_aatype,模版氨基酸类型,[N_tmpl, N_res, 22],22表示AA + Unknown + Gap,包含全部大写字母以及"-",数据如下:
    • alphafold/common/residue_constants.py
HHBLITS_AA_TO_ID = {'A': 0,'B': 2,'C': 1,'D': 2,'E': 3,
...'-': 21,
}
  1. template_domain_names,模版域名,[N_tmpl],PDB+链名,例如5jwf_A, 5jwg_B
'template_domain_names': f'{pdb_id.lower()}_{chain_id}'.encode()
  1. template_sum_probs,模版相似性,[N_tmpl, 1],值越大,越相似,从搜索结果中,解析出来的。

源码:

  # Parse the summary line.pattern = ('Probab=(.*)[\t ]*E-value=(.*)[\t ]*Score=(.*)[\t ]*Aligned_cols=(.*)[\t'' ]*Identities=(.*)%[\t ]*Similarity=(.*)[\t ]*Sum_probs=(.*)[\t '']*Template_Neff=(.*)')match = re.match(pattern, detailed_lines[2])if match is None:raise RuntimeError('Could not parse section: %s. Expected this: \n%s to contain summary.' %(detailed_lines, detailed_lines[2]))(_, _, _, aligned_cols, _, _, sum_probs, _) = [float(x) for x in match.groups()]

示例Case:

No 6883
>2G9Z_A thiamine pyrophosphokinase (E.C.2.7.6.2); Thiamin-PNP, TPK, Thiamin pyrophosphokinase, structural; HET: VNP, PO4; 1.96A {Candida albicans}
Probab=0.43  E-value=1.1e+04  Score=15.10  Aligned_cols=38  Identities=13%  Similarity=-0.010  Sum_probs=22.3  Template_Neff=6.500Q seq              77 QTHLLWVPGGAPDVLRKLMRGGPYLDFLKAQSAGADHVSSVCEGALLLAA  126 (214)
Q Consensus        77 ~~d~livpgg~~~~~~~~~~~~~~~~~l~~~~~~~~~v~~i~~g~~~La~  126 (214)...+|||.+|...  .          ++....+....+++...|+..|.+
T Consensus        62 ~~~~lIilng~~~--~----------~~~~l~~~~~~vI~ADGGan~L~~   99 (348)
T 2G9Z_A           62 NHNVLLILNQKIT--I----------DLISLWKKCEIIVCADGGANSLYE   99 (348)
T ss_dssp             -CEEEEECSSCCC--S----------CHHHHHTTCSEEEEETTHHHHHHH
T ss_pred             CCEEEEEeCCCCC--H----------HHHHHHhcCCEEEEeCHHHHHHHH
Confidence            4566677766653  2          122233456778888888877765

最后,将初始化完成的3块特征,合计6+4+6=14类特征,合并返回即可。

def process(self, input_fasta_path: str, msa_output_dir: str) -> FeatureDict:return {**sequence_features, **msa_features, **templates_result.features}

这篇关于PSP - AlphaFold2 的 2.3.2 版本源码解析 (1)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/172966

相关文章

C语言中自动与强制转换全解析

《C语言中自动与强制转换全解析》在编写C程序时,类型转换是确保数据正确性和一致性的关键环节,无论是隐式转换还是显式转换,都各有特点和应用场景,本文将详细探讨C语言中的类型转换机制,帮助您更好地理解并在... 目录类型转换的重要性自动类型转换(隐式转换)强制类型转换(显式转换)常见错误与注意事项总结与建议类型

MySQL 缓存机制与架构解析(最新推荐)

《MySQL缓存机制与架构解析(最新推荐)》本文详细介绍了MySQL的缓存机制和整体架构,包括一级缓存(InnoDBBufferPool)和二级缓存(QueryCache),文章还探讨了SQL... 目录一、mysql缓存机制概述二、MySQL整体架构三、SQL查询执行全流程四、MySQL 8.0为何移除查

java中不同版本JSONObject区别小结

《java中不同版本JSONObject区别小结》本文主要介绍了java中不同版本JSONObject区别小结,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们... 目录1. FastjsON2. Jackson3. Gson4. org.json6. 总结在Jav

在Rust中要用Struct和Enum组织数据的原因解析

《在Rust中要用Struct和Enum组织数据的原因解析》在Rust中,Struct和Enum是组织数据的核心工具,Struct用于将相关字段封装为单一实体,便于管理和扩展,Enum用于明确定义所有... 目录为什么在Rust中要用Struct和Enum组织数据?一、使用struct组织数据:将相关字段绑

使用Java实现一个解析CURL脚本小工具

《使用Java实现一个解析CURL脚本小工具》文章介绍了如何使用Java实现一个解析CURL脚本的工具,该工具可以将CURL脚本中的Header解析为KVMap结构,获取URL路径、请求类型,解析UR... 目录使用示例实现原理具体实现CurlParserUtilCurlEntityICurlHandler

深入解析Spring TransactionTemplate 高级用法(示例代码)

《深入解析SpringTransactionTemplate高级用法(示例代码)》TransactionTemplate是Spring框架中一个强大的工具,它允许开发者以编程方式控制事务,通过... 目录1. TransactionTemplate 的核心概念2. 核心接口和类3. TransactionT

数据库使用之union、union all、各种join的用法区别解析

《数据库使用之union、unionall、各种join的用法区别解析》:本文主要介绍SQL中的Union和UnionAll的区别,包括去重与否以及使用时的注意事项,还详细解释了Join关键字,... 目录一、Union 和Union All1、区别:2、注意点:3、具体举例二、Join关键字的区别&php

Spring IOC控制反转的实现解析

《SpringIOC控制反转的实现解析》:本文主要介绍SpringIOC控制反转的实现,IOC是Spring的核心思想之一,它通过将对象的创建、依赖注入和生命周期管理交给容器来实现解耦,使开发者... 目录1. IOC的基本概念1.1 什么是IOC1.2 IOC与DI的关系2. IOC的设计目标3. IOC

java中的HashSet与 == 和 equals的区别示例解析

《java中的HashSet与==和equals的区别示例解析》HashSet是Java中基于哈希表实现的集合类,特点包括:元素唯一、无序和可包含null,本文给大家介绍java中的HashSe... 目录什么是HashSetHashSet 的主要特点是HashSet 的常用方法hasSet存储为啥是无序的

Go中sync.Once源码的深度讲解

《Go中sync.Once源码的深度讲解》sync.Once是Go语言标准库中的一个同步原语,用于确保某个操作只执行一次,本文将从源码出发为大家详细介绍一下sync.Once的具体使用,x希望对大家有... 目录概念简单示例源码解读总结概念sync.Once是Go语言标准库中的一个同步原语,用于确保某个操