Arm64体系架构-MPIDR_EL1寄存器

2023-10-09 11:45

本文主要是介绍Arm64体系架构-MPIDR_EL1寄存器,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

背景

        在Arm64多核处理器中, 各核间的关系可能不同. 比如1个16 core的cpu, 每4个core划分为1个cluster,共享L2 cache. 当我们需要从core 0将任务调度出来时,如果优先选择core 1~3, 那么性能明显时优于其他core的.

       那么操作系统怎么知道core之间这样的拓扑信息呢? Arm提供了MPIDR_EL1 寄存器. 每个core都有一个该寄存器。

字段说明

a.该寄存器为只读寄存器

b.AFF3 & AFF2 都为ClusterID(从软件角度理解为不同CPU组的ID),AFF1 为CPUID,           AFF0 为多线程核的线程ID(指的是是否支持超线程的id)

MPIDR_EL1

U, bit [30]

0表示多核处理, 1表示单核处理

MT, bit [24]

0表示没有使用单核超线程, 1表示使用了单核超线程。

其他的affinity,则表示了各核之间的亲和性。以一个8核2 cluster 非超线程cpu为例, core0的mpidr_el1的affinity为(0,0,0,0),core1为(0,0,0,1),以次类推, core7则为(0,0,1,3)。Arm规范要求了每个core的(Aff3,Aff2,Aff1,Aff0)编码必须唯一。不支持超线程的cpu, Aff0表示核id

这样通过树形结构的编码,OS可以从该寄存器中获取各core之间的关系。

Kernel应用

// kernel表示每个core的拓扑结构,每个core对应一个该结构
struct cpu_topology {int thread_id;int core_id;int package_id;int llc_id;cpumask_t thread_sibling;cpumask_t core_sibling;cpumask_t llc_sibling;
};void store_cpu_topology(unsigned int cpuid)
{struct cpu_topology *cpuid_topo = &cpu_topology[cpuid];// 读取MPIDR_EL1u64 mpidr = read_cpuid_mpidr();/* Create cpu topology mapping based on MPIDR. */// 判断芯片是否支持超线程if (mpidr & MPIDR_MT_BITMASK) {/* Multiprocessor system : Multi-threads per core */// 在支持超线程的cpu, Aff0表示一个core内的超线程idcpuid_topo->thread_id  = MPIDR_AFFINITY_LEVEL(mpidr, 0);cpuid_topo->core_id    = MPIDR_AFFINITY_LEVEL(mpidr, 1);// package_id即cluster idcpuid_topo->package_id = MPIDR_AFFINITY_LEVEL(mpidr, 2) |MPIDR_AFFINITY_LEVEL(mpidr, 3) << 8;} else {/* Multiprocessor system : Single-thread per core */cpuid_topo->thread_id  = -1;// 不支持超线程的cpu, Aff0表示核idcpuid_topo->core_id    = MPIDR_AFFINITY_LEVEL(mpidr, 0);cpuid_topo->package_id = MPIDR_AFFINITY_LEVEL(mpidr, 1) |MPIDR_AFFINITY_LEVEL(mpidr, 2) << 8 |MPIDR_AFFINITY_LEVEL(mpidr, 3) << 16;}... ...
}

MPIDR_EL1在devicetree中的体现
        配置DTS时,需要设置MPIDR_EL1的值到CPU node中的reg property,以ArmV8 64bit系统为例:当#address-cell property为2时,需要设置MPIDR_EL1[39:32]到reg[7:0]、MPIDR_EL1[23:0]到reg[23:0]; 当#address-cell property为1时,需要设置MPIDR_EL1[23:0]到reg[23:0];reg的其他位设置位0。

Linux启动过程中MPIDR_EL1的相关逻辑
        a.内核中定义了cpu的逻辑映射变量如下,该变量保存MPIDR_EL1寄存器中亲和值。

        /* * Logical CPU mapping. */
        extern u64 __cpu_logical_map[NR_CPUS];
        #define cpu_logical_map(cpu)    __cpu_logical_map[cpu]
        b.cpu0(boot cpu/primary cpu)获取mpidr_el1亲和值的方式与其他cpu(secondary cpu)

        获取方式有所不同。

    void __init smp_setup_processor_id(void)
      {
                /*启动该过程时只有boot cpu即cpu0在执行,其他cpu还未启动
                通过read_cpuid_mpidr获取的MPIDR_EL1值即为当前执行的CPU0
                的亲和值*/
                u64 mpidr = read_cpuid_mpidr() & MPIDR_HWID_BITMASK;
 
                /*将获取到的cpu0的亲和值保存在cpu_logical_map(0)*/
                cpu_logical_map(0) = mpidr;
 
                /*
                 * clear __my_cpu_offset on boot CPU to avoid hang caused by
                 * using percpu variable early, for example, lockdep will
                 * access percpu variable inside lock_release
                 */
                set_my_cpu_offset(0);
                pr_info("Booting Linux on physical CPU 0x%lx\n", (unsigned long)mpidr);
        }

这篇关于Arm64体系架构-MPIDR_EL1寄存器的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/172624

相关文章

MySQL 缓存机制与架构解析(最新推荐)

《MySQL缓存机制与架构解析(最新推荐)》本文详细介绍了MySQL的缓存机制和整体架构,包括一级缓存(InnoDBBufferPool)和二级缓存(QueryCache),文章还探讨了SQL... 目录一、mysql缓存机制概述二、MySQL整体架构三、SQL查询执行全流程四、MySQL 8.0为何移除查

微服务架构之使用RabbitMQ进行异步处理方式

《微服务架构之使用RabbitMQ进行异步处理方式》本文介绍了RabbitMQ的基本概念、异步调用处理逻辑、RabbitMQ的基本使用方法以及在SpringBoot项目中使用RabbitMQ解决高并发... 目录一.什么是RabbitMQ?二.异步调用处理逻辑:三.RabbitMQ的基本使用1.安装2.架构

mybatis的整体架构

mybatis的整体架构分为三层: 1.基础支持层 该层包括:数据源模块、事务管理模块、缓存模块、Binding模块、反射模块、类型转换模块、日志模块、资源加载模块、解析器模块 2.核心处理层 该层包括:配置解析、参数映射、SQL解析、SQL执行、结果集映射、插件 3.接口层 该层包括:SqlSession 基础支持层 该层保护mybatis的基础模块,它们为核心处理层提供了良好的支撑。

百度/小米/滴滴/京东,中台架构比较

小米中台建设实践 01 小米的三大中台建设:业务+数据+技术 业务中台--从业务说起 在中台建设中,需要规范化的服务接口、一致整合化的数据、容器化的技术组件以及弹性的基础设施。并结合业务情况,判定是否真的需要中台。 小米参考了业界优秀的案例包括移动中台、数据中台、业务中台、技术中台等,再结合其业务发展历程及业务现状,整理了中台架构的核心方法论,一是企业如何共享服务,二是如何为业务提供便利。

系统架构设计师: 信息安全技术

简简单单 Online zuozuo: 简简单单 Online zuozuo 简简单单 Online zuozuo 简简单单 Online zuozuo 简简单单 Online zuozuo :本心、输入输出、结果 简简单单 Online zuozuo : 文章目录 系统架构设计师: 信息安全技术前言信息安全的基本要素:信息安全的范围:安全措施的目标:访问控制技术要素:访问控制包括:等保

利用命令模式构建高效的手游后端架构

在现代手游开发中,后端架构的设计对于支持高并发、快速迭代和复杂游戏逻辑至关重要。命令模式作为一种行为设计模式,可以有效地解耦请求的发起者与接收者,提升系统的可维护性和扩展性。本文将深入探讨如何利用命令模式构建一个强大且灵活的手游后端架构。 1. 命令模式的概念与优势 命令模式通过将请求封装为对象,使得请求的发起者和接收者之间的耦合度降低。这种模式的主要优势包括: 解耦请求发起者与处理者

创业者该如何设计公司的股权架构

本文来自七八点联合IT橘子和车库咖啡的一系列关于设计公司股权结构的讲座。 主讲人何德文: 在公司发展的不同阶段,创业者都会面临公司股权架构设计问题: 1.合伙人合伙创业第一天,就会面临股权架构设计问题(合伙人股权设计); 2.公司早期要引入天使资金,会面临股权架构设计问题(天使融资); 3.公司有三五十号人,要激励中层管理与重要技术人员和公司长期走下去,会面临股权架构设计问题(员工股权激

【系统架构设计师】黑板架构详解

黑板架构(Blackboard Architecture)是一种软件架构模式,它模仿了多个专家系统协作解决问题的场景。在这种架构中,“黑板”作为一个中央知识库,存储了问题的当前状态以及所有的解决方案和部分解决方案。黑板架构特别适合于解决那些没有确定算法、需要多个知识源(或称为“专家”)共同作用才能解决的复杂问题。 一、黑板架构的组成 黑板架构主要由以下几个部分组成: 黑板(Blackboa

Java后端微服务架构下的API限流策略:Guava RateLimiter

Java后端微服务架构下的API限流策略:Guava RateLimiter 大家好,我是微赚淘客返利系统3.0的小编,是个冬天不穿秋裤,天冷也要风度的程序猿! 在微服务架构中,API限流是保护服务不受过度使用和拒绝服务攻击的重要手段。Guava RateLimiter是Google开源的Java库中的一个组件,提供了简单易用的限流功能。 API限流概述 API限流通过控制请求的速率来防止

Arch - 演进中的架构

文章目录 Pre原始分布式时代1. 背景与起源2. 分布式系统的初步探索3. 分布式计算环境(DCE)4. 技术挑战与困境5. 原始分布式时代的失败与教训6. 未来展望 单体时代优势缺陷单体架构与微服务架构的关系总结 SOA时代1. SOA架构及其背景1. 烟囱式架构(Information Silo Architecture)2. [微内核架构](https://www.oreilly.c