本文主要是介绍python 同步获取与同步通达信财务数据,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
利用python同步股票的财务数,进行基本面辅助分析:
# coding: UTF-8
import hashlib
import zipfile
import timeimport pandas as pd
import requests
import threading
import sys
import os
from retry import retry
from queue import Queue#########################
# 读取通达信专业财务数据
######################class TDXFinance:tdxCwPath = ""fileType = ".pkl"subjectsPath = "investment/tdxSubjects.csv"fileInfoColumns = ['filename', 'md5', 'filesize']def __init__(self, cwPath, fileType, subjectsPath="investment/tdxSubjects.csv"):self.tdxCwPath = cwPathself.fileType = fileTypeself.subjectsPath = subjectsPathdef read_cat(self):df = pd.read_csv('tdxSubjectCat.csv', header=0)return dfdef read_subjects(self, cat=0):subjects = pd.read_csv(self.subjectsPath, sep='--', header=0, encoding="UTF-8", engine='python')if cat > 0: # 只返回指定的分类科目return subjects.loc[subjects['cat'] == cat]return subjects# 根据代码 @param code example:600019# 日期 @param date example:202209030 一般为每季的最后一天def get_all_infos(self, date, code):df = self.get_all_finance(date)return df.loc[df[0] == code]# 根据代码 @param code example:600019# 日期 @param date example:202209030 一般为每季的最后一天# 科目 @param subject (1~580) @see read_subject()def get_info_by_subject(self, code, date, *subject):pass# 获取指定日期的所有公司财务数据# 日期 @param date YYYY0331,YYYY0930,YYYY1231def get_all_finance(self, date):pkl_path=self.tdxCwPath + os.sep + 'gpcw' + date + self.fileTypedat_path=self.tdxCwPath+os.sep+'gpcw'+date+".dat"pkl_size=os.stat(pkl_path).st_sizedat_size=os.stat(dat_path).st_sizeif pkl_size<dat_size:df=historyfinancialreader(dat_path)df.to_pickle(pkl_path,compression=None)df = pd.read_pickle(self.tdxCwPath + os.sep + 'gpcw' + date + self.fileType)return df# 通过对比服务端和本地的列表文件查检需要更新的财务数据文件# 逻辑为第一步下载服务器上的列表文件,与本地比较MD5多出的或不等的就下载# 下载完后更新文件下载列表,如果强制更新则不比较对服务器上的文件进行全量下载。# increment增强更新# resume恢复更新失败的文件,检查文件大小与文件例表中的大小,如果不等则进行更新。def update(self, increment=True, resume=False):local_info_path=self.tdxCwPath + os.sep + "gpcw.txt"localListInfos = pd.read_csv(local_info_path)localListInfos.columns = self.fileInfoColumnsprint(localListInfos)localAllFileList = os.listdir(self.tdxCwPath)localZipFileList = []for file in localAllFileList:if len(file) == 16 and file[:4] == "gpcw" and file[-4:] == ".zip":localZipFileList.append(file)print(localZipFileList)self.many_thread_download = ManyThreadDownload()# 本地信息列表中文件名不存在于本地zip文件列表中的需直接下载for filename in localListInfos['filename'].tolist():if filename not in localZipFileList:self.donwload(filename)localZipFileList.append(filename)remoteFileInfo = self.load_remote_cw_info_file()# 远程信息列表中MD5值在本地不存在的需要下载remote_md5_list=remoteFileInfo['md5'].tolist()for filename in localZipFileList:local_zipfile_path=self.tdxCwPath+os.sep+filenamefile_size=os.stat(local_zipfile_path).st_size#with open(local_zipfile_path, 'rb') as fobj: # 读取本机zip文件,计算md5# file_content = fobj.read()# file_md5 = hashlib.md5(file_content).hexdigest()remote_size=remoteFileInfo.loc[remoteFileInfo['filename']==filename]['filesize']if file_size < int(remote_size):print('willupdate:::'+filename)self.donwload(filename)for filename in remoteFileInfo['filename']:if filename not in localZipFileList:print('will download::::'+filename)self.donwload(filename)# 将远程文件信息更新到本地remoteFileInfo.to_csv(local_info_path,header=False,index=False)#根据文件名下载财务文件包def donwload(self,filename):tdx_zipfile_url = 'http://down.tdx.com.cn:8001/tdxfin/' + filenamelocal_zipfile_path = self.tdxCwPath + os.sep + filenameprint(tdx_zipfile_url)print(local_zipfile_path)self.many_thread_download.run(tdx_zipfile_url, local_zipfile_path)with zipfile.ZipFile(local_zipfile_path, 'r') as zipobj: # 打开zip对象,释放zip文件。会自动覆盖原文件。zipobj.extractall(self.tdxCwPath)local_datfile_path = local_zipfile_path[:-4] + ".dat"df = historyfinancialreader(local_datfile_path)csvpath = self.tdxCwPath +os.sep+ filename[:-4] + ".pkl"df.to_pickle(csvpath, compression=None)def load_remote_cw_info_file(self):tdx_txt_url = 'http://down.tdx.com.cn:8001/tdxfin/gpcw.txt'tdx_txt_df = self.dowload_url(tdx_txt_url) # 下载gpcw.txttdx_txt_df = tdx_txt_df.text.strip().split('\r\n') # 分割行tdx_txt_df = [l.strip().split(",") for l in tdx_txt_df] # 用,分割,二维列表tdx_txt_df = pd.DataFrame(tdx_txt_df, columns=self.fileInfoColumns) # 转为df格式,好比较return tdx_txt_df@retry(tries=3, delay=3) # 无限重试装饰性函数def dowload_url(self, url):""":param url:要下载的url:return: request.get实例化对象"""import requestsheader = {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) ''Chrome/87.0.4280.141',}response_obj = requests.get(url, headers=header, timeout=5) # get方式请求response_obj.raise_for_status() # 检测异常方法。如有异常则抛出,触发retry# print(f'{url} 下载完成')return response_objdef historyfinancialreader(filepath):"""读取解析通达信目录的历史财务数据:param filepath: 字符串类型。传入文件路径:return: DataFrame格式。返回解析出的财务文件内容"""import structcw_file = open(filepath, 'rb')header_pack_format = '<1hI1H3L'header_size = struct.calcsize(header_pack_format)stock_item_size = struct.calcsize("<6s1c1L")data_header = cw_file.read(header_size)stock_header = struct.unpack(header_pack_format, data_header)max_count = stock_header[2]report_date = stock_header[1]report_size = stock_header[4]report_fields_count = int(report_size / 4)report_pack_format = '<{}f'.format(report_fields_count)results = []for stock_idx in range(0, max_count):cw_file.seek(header_size + stock_idx * struct.calcsize("<6s1c1L"))si = cw_file.read(stock_item_size)stock_item = struct.unpack("<6s1c1L", si)code = stock_item[0].decode("utf-8")foa = stock_item[2]cw_file.seek(foa)info_data = cw_file.read(struct.calcsize(report_pack_format))data_size = len(info_data)cw_info = list(struct.unpack(report_pack_format, info_data))cw_info.insert(0, code)results.append(cw_info)df = pd.DataFrame(results)return dfclass ManyThreadDownload:def __init__(self, num=10):self.num = num # 线程数,默认10self.url = '' # urlself.name = '' # 目标地址self.total = 0 # 文件大小# 获取每个线程下载的区间def get_range(self):ranges = []offset = int(self.total / self.num)for i in range(self.num):if i == self.num - 1:ranges.append((i * offset, ''))else:ranges.append(((i * offset), (i + 1) * offset - 1))return ranges # [(0,99),(100,199),(200,"")]# 通过传入开始和结束位置来下载文件def download(self, ts_queue):while not ts_queue.empty():start_, end_ = ts_queue.get()headers = {'Range': 'Bytes=%s-%s' % (start_, end_),'Accept-Encoding': '*'}flag = Falsewhile not flag:try:# 设置重连次数requests.adapters.DEFAULT_RETRIES = 10# s = requests.session() # 每次都会发起一次TCP握手,性能降低,还可能因发起多个连接而被拒绝# # 设置连接活跃状态为False# s.keep_alive = False# 默认stream=false,立即下载放到内存,文件过大会内存不足,大文件时用True需改一下码子res = requests.get(self.url, headers=headers)res.close() # 关闭请求 释放内存except Exception as e:print((start_, end_, "出错了,连接重试:%s", e,))time.sleep(1)continueflag = True# print("\n", ("%s-%s download success" % (start_, end_)), end="", flush=True)# with lock:with open(self.name, "rb+") as fd:fd.seek(start_)fd.write(res.content)# self.fd.seek(start_) # 指定写文件的位置,下载的内容放到正确的位置处# self.fd.write(res.content) # 将下载文件保存到 fd所打开的文件里def run(self, url, name):self.url = urlself.name = nameself.total = int(requests.head(url).headers['Content-Length'])# file_size = int(urlopen(self.url).info().get('Content-Length', -1))file_size = self.totalif os.path.exists(name):first_byte = os.path.getsize(name)else:first_byte = 0if first_byte >= file_size:return file_sizeself.fd = open(name, "wb") # 续传时直接rb+ 文件不存在时会报错,先wb再rb+self.fd.truncate(self.total) # 建一个和下载文件一样大的文件,不是必须的,stream=True时会用到self.fd.close()# self.fd = open(self.name, "rb+") # 续传时ab方式打开时会强制指针指向文件末尾,seek并不管用,应用rb+模式thread_list = []ts_queue = Queue() # 用队列的线程安全特性,以列表的形式把开始和结束加到队列for ran in self.get_range():start_, end_ = rants_queue.put((start_, end_))for i in range(self.num):t = threading.Thread(target=self.download, name='th-' + str(i), kwargs={'ts_queue': ts_queue})t.setDaemon(True)thread_list.append(t)for t in thread_list:t.start()for t in thread_list:t.join() # 设置等待,全部线程完事后再继续self.fd.close()def sync():cwPath = "/www/py/cw" # '/Users/luoshunkui/jpworkspace/cw/gpcw' #d:\\gjdata\\cw\\gpcwif sys.platform == 'win32' or sys.platform == 'cygwin':cwPath = "d:\\gjdata\\cw"if sys.platform=='darwin':cwPath='/Users/luoshunkui/userdata/tdx/cw'tdxFinance = TDXFinance(cwPath, ".pkl", "tdxSubjects.csv")tdxFinance.update()def test():cwPath = "/www/py/cw" # linux下财务数据存储地址if sys.platform == 'win32' or sys.platform == 'cygwin': # windows下的财务数据存储地址cwPath = "d:\\gjdata\\cw"if sys.platform=='darwin': # macos下的存储地址cwPath='/Users/userdata/tdx/cw'tdxFinance = TDXFinance(cwPath, ".pkl", "tdxSubjects.csv")# cats = tdxFinance.read_cat()# print(cats)# subjects = tdxFinance.read_subjects(0)# print(subjects)# x, y, z = 10, 20, 30# print(x)# print(y)# print(z)print(sys.argv)codes=[]date=''cats=tdxFinance.read_cat()print(cats)for arg in sys.argv:if arg.startswith('code='):codes=arg[5:].split(',')if arg.startswith('date='):date=arg[5:]for code in codes:infos = tdxFinance.get_all_infos(date, code)print(infos)if len(date)>0:infos=tdxFinance.get_all_finance(date)print(infos)# print(float(infos[506])/10000)# alls = tdxFinance.get_all_finance('20221231')# print(alls)# pf=alls.loc[alls[0].isin(['688778','603267'])]# print(pf)# alls1 = tdxFinance.get_all_finance('20210930')# alls2 = tdxFinance.get_all_finance('20200930')# alls3 = tdxFinance.get_all_finance('20190930')# pf = alls.loc[alls[0].isin(['002539', '000902', '002258'])]# print(pf)# npf = pf.T# print(npf)# print(npf.index)# nnpf = pd.merge(npf, subjects, left_index=True, right_on='code')# print(nnpf)# subject = 119# yi = 100000000# print(subjects.loc[subject])# sum2019 = alls3[subject].sum()# sum2020 = alls2[subject].sum()# sum2021 = alls1[subject].sum()# sum = alls[subject].sum()# print(sum2019 / yi)# print(sum2020 / yi)# print(sum2021 / yi)# print(sum / yi)if __name__ == '__main__':if 'test' in sys.argv:test()else:sync()
这篇关于python 同步获取与同步通达信财务数据的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!