MapReduce编程开发之求平均成绩

2023-10-09 08:59

本文主要是介绍MapReduce编程开发之求平均成绩,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

    MapReduce计算平均成绩是一个常见的算法,本省思路很简单,就是将每个人的成绩汇总,然后做除法,在map阶段,是直接将姓名做key,分数作为value输出。在shuffle阶段,会将每个人的所有成绩做汇总,数据结构变为<name,<score1,score2...>>这样子,我们在reduce阶段就通过分数这个value-list来结算平均分。average = sum(score)/courseCount,即平均分等于分数总和除以课程数。

mapreduce代码:

package com.xxx.hadoop.mapred;
import java.io.IOException;
import java.util.StringTokenizer;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.DoubleWritable;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;/*** 求平均成绩**/
public class AverageScoreApp {public static class Map extends Mapper<Object, Text, Text, IntWritable>{@Overrideprotected void map(Object key, Text value, Mapper<Object, Text, Text, IntWritable>.Context context)throws IOException, InterruptedException {//成绩的结构是:// 张三	80// 李四	82// 王五	86StringTokenizer tokenizer = new StringTokenizer(value.toString(), "\n");while(tokenizer.hasMoreElements()) {StringTokenizer lineTokenizer = new StringTokenizer(tokenizer.nextToken());String name = lineTokenizer.nextToken(); //姓名String score = lineTokenizer.nextToken();//成绩context.write(new Text(name), new IntWritable(Integer.parseInt(score)));}}}public static class Reduce extends Reducer<Text, IntWritable, Text, DoubleWritable>{@Overrideprotected void reduce(Text key, Iterable<IntWritable> values,Reducer<Text, IntWritable, Text, DoubleWritable>.Context context)throws IOException, InterruptedException {//reduce这里输入的数据结构是:// 张三 <80,85,90>// 李四 <82,88,94>// 王五 <86,80,92>int sum = 0;//所有课程成绩总分double average = 0;//平均成绩int courseNum = 0; //课程数目for(IntWritable score:values) {sum += score.get();courseNum++;}average = sum/courseNum;context.write(new Text(key), new DoubleWritable(average));}}public static void main(String[] args) throws Exception{String input="/user/root/averagescore/input",output="/user/root/averagescore/output";System.setProperty("HADOOP_USER_NAME", "root");Configuration conf = new Configuration();conf.set("fs.defaultFS", "hdfs://192.168.56.202:9000");Job job = Job.getInstance(conf);job.setJarByClass(AverageScoreApp.class);job.setMapperClass(Map.class);job.setReducerClass(Reduce.class);job.setMapOutputKeyClass(Text.class);job.setMapOutputValueClass(IntWritable.class);job.setOutputKeyClass(Text.class);job.setOutputValueClass(DoubleWritable.class);FileInputFormat.addInputPath(job, new Path(input));FileOutputFormat.setOutputPath(job, new Path(output));System.exit(job.waitForCompletion(true)?0:1);}}

准备学生成绩数据:

控制台打印信息:

2019-08-31 15:50:26 [INFO ]  [main]  [org.apache.hadoop.conf.Configuration.deprecation] session.id is deprecated. Instead, use dfs.metrics.session-id
2019-08-31 15:50:26 [INFO ]  [main]  [org.apache.hadoop.metrics.jvm.JvmMetrics] Initializing JVM Metrics with processName=JobTracker, sessionId=
2019-08-31 15:50:27 [WARN ]  [main]  [org.apache.hadoop.mapreduce.JobResourceUploader] Hadoop command-line option parsing not performed. Implement the Tool interface and execute your application with ToolRunner to remedy this.
2019-08-31 15:50:27 [WARN ]  [main]  [org.apache.hadoop.mapreduce.JobResourceUploader] No job jar file set.  User classes may not be found. See Job or Job#setJar(String).
2019-08-31 15:50:27 [INFO ]  [main]  [org.apache.hadoop.mapreduce.lib.input.FileInputFormat] Total input paths to process : 3
2019-08-31 15:50:27 [INFO ]  [main]  [org.apache.hadoop.mapreduce.JobSubmitter] number of splits:3
2019-08-31 15:50:27 [INFO ]  [main]  [org.apache.hadoop.mapreduce.JobSubmitter] Submitting tokens for job: job_local83653871_0001
2019-08-31 15:50:27 [INFO ]  [main]  [org.apache.hadoop.mapreduce.Job] The url to track the job: http://localhost:8080/
2019-08-31 15:50:27 [INFO ]  [main]  [org.apache.hadoop.mapreduce.Job] Running job: job_local83653871_0001
2019-08-31 15:50:27 [INFO ]  [Thread-3]  [org.apache.hadoop.mapred.LocalJobRunner] OutputCommitter set in config null
2019-08-31 15:50:27 [INFO ]  [Thread-3]  [org.apache.hadoop.mapreduce.lib.output.FileOutputCommitter] File Output Committer Algorithm version is 1
2019-08-31 15:50:27 [INFO ]  [Thread-3]  [org.apache.hadoop.mapred.LocalJobRunner] OutputCommitter is org.apache.hadoop.mapreduce.lib.output.FileOutputCommitter
2019-08-31 15:50:27 [INFO ]  [Thread-3]  [org.apache.hadoop.mapred.LocalJobRunner] Waiting for map tasks
2019-08-31 15:50:27 [INFO ]  [LocalJobRunner Map Task Executor #0]  [org.apache.hadoop.mapred.LocalJobRunner] Starting task: attempt_local83653871_0001_m_000000_0
2019-08-31 15:50:28 [INFO ]  [LocalJobRunner Map Task Executor #0]  [org.apache.hadoop.mapreduce.lib.output.FileOutputCommitter] File Output Committer Algorithm version is 1
2019-08-31 15:50:28 [INFO ]  [LocalJobRunner Map Task Executor #0]  [org.apache.hadoop.yarn.util.ProcfsBasedProcessTree] ProcfsBasedProcessTree currently is supported only on Linux.
2019-08-31 15:50:28 [INFO ]  [LocalJobRunner Map Task Executor #0]  [org.apache.hadoop.mapred.Task]  Using ResourceCalculatorProcessTree : org.apache.hadoop.yarn.util.WindowsBasedProcessTree@52fc070c
2019-08-31 15:50:28 [INFO ]  [LocalJobRunner Map Task Executor #0]  [org.apache.hadoop.mapred.MapTask] Processing split: hdfs://192.168.56.202:9000/user/root/averagescore/input/math.txt:0+55
2019-08-31 15:50:28 [INFO ]  [LocalJobRunner Map Task Executor #0]  [org.apache.hadoop.mapred.MapTask] (EQUATOR) 0 kvi 26214396(104857584)
2019-08-31 15:50:28 [INFO ]  [LocalJobRunner Map Task Executor #0]  [org.apache.hadoop.mapred.MapTask] mapreduce.task.io.sort.mb: 100
2019-08-31 15:50:28 [INFO ]  [LocalJobRunner Map Task Executor #0]  [org.apache.hadoop.mapred.MapTask] soft limit at 83886080
2019-08-31 15:50:28 [INFO ]  [LocalJobRunner Map Task Executor #0]  [org.apache.hadoop.mapred.MapTask] bufstart = 0; bufvoid = 104857600
2019-08-31 15:50:28 [INFO ]  [LocalJobRunner Map Task Executor #0]  [org.apache.hadoop.mapred.MapTask] kvstart = 26214396; length = 6553600
2019-08-31 15:50:28 [INFO ]  [LocalJobRunner Map Task Executor #0]  [org.apache.hadoop.mapred.MapTask] Map output collector class = org.apache.hadoop.mapred.MapTask$MapOutputBuffer
2019-08-31 15:50:28 [INFO ]  [LocalJobRunner Map Task Executor #0]  [org.apache.hadoop.mapred.LocalJobRunner] 
2019-08-31 15:50:28 [INFO ]  [LocalJobRunner Map Task Executor #0]  [org.apache.hadoop.mapred.MapTask] Starting flush of map output
2019-08-31 15:50:28 [INFO ]  [LocalJobRunner Map Task Executor #0]  [org.apache.hadoop.mapred.MapTask] Spilling map output
2019-08-31 15:50:28 [INFO ]  [LocalJobRunner Map Task Executor #0]  [org.apache.hadoop.mapred.MapTask] bufstart = 0; bufend = 58; bufvoid = 104857600
2019-08-31 15:50:28 [INFO ]  [LocalJobRunner Map Task Executor #0]  [org.apache.hadoop.mapred.MapTask] kvstart = 26214396(104857584); kvend = 26214380(104857520); length = 17/6553600
2019-08-31 15:50:28 [INFO ]  [LocalJobRunner Map Task Executor #0]  [org.apache.hadoop.mapred.MapTask] Finished spill 0
2019-08-31 15:50:28 [INFO ]  [LocalJobRunner Map Task Executor #0]  [org.apache.hadoop.mapred.Task] Task:attempt_local83653871_0001_m_000000_0 is done. And is in the process of committing
2019-08-31 15:50:28 [INFO ]  [LocalJobRunner Map Task Executor #0]  [org.apache.hadoop.mapred.LocalJobRunner] map
2019-08-31 15:50:28 [INFO ]  [LocalJobRunner Map Task Executor #0]  [org.apache.hadoop.mapred.Task] Task 'attempt_local83653871_0001_m_000000_0' done.
2019-08-31 15:50:28 [INFO ]  [LocalJobRunner Map Task Executor #0]  [org.apache.hadoop.mapred.LocalJobRunner] Finishing task: attempt_local83653871_0001_m_000000_0
2019-08-31 15:50:28 [INFO ]  [LocalJobRunner Map Task Executor #0]  [org.apache.hadoop.mapred.LocalJobRunner] Starting task: attempt_local83653871_0001_m_000001_0
2019-08-31 15:50:28 [INFO ]  [LocalJobRunner Map Task Executor #0]  [org.apache.hadoop.mapreduce.lib.output.FileOutputCommitter] File Output Committer Algorithm version is 1
2019-08-31 15:50:28 [INFO ]  [LocalJobRunner Map Task Executor #0]  [org.apache.hadoop.yarn.util.ProcfsBasedProcessTree] ProcfsBasedProcessTree currently is supported only on Linux.
2019-08-31 15:50:28 [INFO ]  [LocalJobRunner Map Task Executor #0]  [org.apache.hadoop.mapred.Task]  Using ResourceCalculatorProcessTree : org.apache.hadoop.yarn.util.WindowsBasedProcessTree@3f0602b3
2019-08-31 15:50:28 [INFO ]  [LocalJobRunner Map Task Executor #0]  [org.apache.hadoop.mapred.MapTask] Processing split: hdfs://192.168.56.202:9000/user/root/averagescore/input/chinese.txt:0+54
2019-08-31 15:50:28 [INFO ]  [LocalJobRunner Map Task Executor #0]  [org.apache.hadoop.mapred.MapTask] (EQUATOR) 0 kvi 26214396(104857584)
2019-08-31 15:50:28 [INFO ]  [LocalJobRunner Map Task Executor #0]  [org.apache.hadoop.mapred.MapTask] mapreduce.task.io.sort.mb: 100
2019-08-31 15:50:28 [INFO ]  [LocalJobRunner Map Task Executor #0]  [org.apache.hadoop.mapred.MapTask] soft limit at 83886080
2019-08-31 15:50:28 [INFO ]  [LocalJobRunner Map Task Executor #0]  [org.apache.hadoop.mapred.MapTask] bufstart = 0; bufvoid = 104857600
2019-08-31 15:50:28 [INFO ]  [LocalJobRunner Map Task Executor #0]  [org.apache.hadoop.mapred.MapTask] kvstart = 26214396; length = 6553600
2019-08-31 15:50:28 [INFO ]  [LocalJobRunner Map Task Executor #0]  [org.apache.hadoop.mapred.MapTask] Map output collector class = org.apache.hadoop.mapred.MapTask$MapOutputBuffer
2019-08-31 15:50:28 [INFO ]  [LocalJobRunner Map Task Executor #0]  [org.apache.hadoop.mapred.LocalJobRunner] 
2019-08-31 15:50:28 [INFO ]  [LocalJobRunner Map Task Executor #0]  [org.apache.hadoop.mapred.MapTask] Starting flush of map output
2019-08-31 15:50:28 [INFO ]  [LocalJobRunner Map Task Executor #0]  [org.apache.hadoop.mapred.MapTask] Spilling map output
2019-08-31 15:50:28 [INFO ]  [LocalJobRunner Map Task Executor #0]  [org.apache.hadoop.mapred.MapTask] bufstart = 0; bufend = 58; bufvoid = 104857600
2019-08-31 15:50:28 [INFO ]  [LocalJobRunner Map Task Executor #0]  [org.apache.hadoop.mapred.MapTask] kvstart = 26214396(104857584); kvend = 26214380(104857520); length = 17/6553600
2019-08-31 15:50:28 [INFO ]  [LocalJobRunner Map Task Executor #0]  [org.apache.hadoop.mapred.MapTask] Finished spill 0
2019-08-31 15:50:28 [INFO ]  [LocalJobRunner Map Task Executor #0]  [org.apache.hadoop.mapred.Task] Task:attempt_local83653871_0001_m_000001_0 is done. And is in the process of committing
2019-08-31 15:50:28 [INFO ]  [LocalJobRunner Map Task Executor #0]  [org.apache.hadoop.mapred.LocalJobRunner] map
2019-08-31 15:50:28 [INFO ]  [LocalJobRunner Map Task Executor #0]  [org.apache.hadoop.mapred.Task] Task 'attempt_local83653871_0001_m_000001_0' done.
2019-08-31 15:50:28 [INFO ]  [LocalJobRunner Map Task Executor #0]  [org.apache.hadoop.mapred.LocalJobRunner] Finishing task: attempt_local83653871_0001_m_000001_0
2019-08-31 15:50:28 [INFO ]  [LocalJobRunner Map Task Executor #0]  [org.apache.hadoop.mapred.LocalJobRunner] Starting task: attempt_local83653871_0001_m_000002_0
2019-08-31 15:50:28 [INFO ]  [LocalJobRunner Map Task Executor #0]  [org.apache.hadoop.mapreduce.lib.output.FileOutputCommitter] File Output Committer Algorithm version is 1
2019-08-31 15:50:28 [INFO ]  [LocalJobRunner Map Task Executor #0]  [org.apache.hadoop.yarn.util.ProcfsBasedProcessTree] ProcfsBasedProcessTree currently is supported only on Linux.
2019-08-31 15:50:28 [INFO ]  [LocalJobRunner Map Task Executor #0]  [org.apache.hadoop.mapred.Task]  Using ResourceCalculatorProcessTree : org.apache.hadoop.yarn.util.WindowsBasedProcessTree@47fe69f7
2019-08-31 15:50:28 [INFO ]  [LocalJobRunner Map Task Executor #0]  [org.apache.hadoop.mapred.MapTask] Processing split: hdfs://192.168.56.202:9000/user/root/averagescore/input/english.txt:0+53
2019-08-31 15:50:28 [INFO ]  [LocalJobRunner Map Task Executor #0]  [org.apache.hadoop.mapred.MapTask] (EQUATOR) 0 kvi 26214396(104857584)
2019-08-31 15:50:28 [INFO ]  [LocalJobRunner Map Task Executor #0]  [org.apache.hadoop.mapred.MapTask] mapreduce.task.io.sort.mb: 100
2019-08-31 15:50:28 [INFO ]  [LocalJobRunner Map Task Executor #0]  [org.apache.hadoop.mapred.MapTask] soft limit at 83886080
2019-08-31 15:50:28 [INFO ]  [LocalJobRunner Map Task Executor #0]  [org.apache.hadoop.mapred.MapTask] bufstart = 0; bufvoid = 104857600
2019-08-31 15:50:28 [INFO ]  [LocalJobRunner Map Task Executor #0]  [org.apache.hadoop.mapred.MapTask] kvstart = 26214396; length = 6553600
2019-08-31 15:50:28 [INFO ]  [LocalJobRunner Map Task Executor #0]  [org.apache.hadoop.mapred.MapTask] Map output collector class = org.apache.hadoop.mapred.MapTask$MapOutputBuffer
2019-08-31 15:50:28 [INFO ]  [LocalJobRunner Map Task Executor #0]  [org.apache.hadoop.mapred.LocalJobRunner] 
2019-08-31 15:50:28 [INFO ]  [LocalJobRunner Map Task Executor #0]  [org.apache.hadoop.mapred.MapTask] Starting flush of map output
2019-08-31 15:50:28 [INFO ]  [LocalJobRunner Map Task Executor #0]  [org.apache.hadoop.mapred.MapTask] Spilling map output
2019-08-31 15:50:28 [INFO ]  [LocalJobRunner Map Task Executor #0]  [org.apache.hadoop.mapred.MapTask] bufstart = 0; bufend = 58; bufvoid = 104857600
2019-08-31 15:50:28 [INFO ]  [LocalJobRunner Map Task Executor #0]  [org.apache.hadoop.mapred.MapTask] kvstart = 26214396(104857584); kvend = 26214380(104857520); length = 17/6553600
2019-08-31 15:50:28 [INFO ]  [LocalJobRunner Map Task Executor #0]  [org.apache.hadoop.mapred.MapTask] Finished spill 0
2019-08-31 15:50:28 [INFO ]  [LocalJobRunner Map Task Executor #0]  [org.apache.hadoop.mapred.Task] Task:attempt_local83653871_0001_m_000002_0 is done. And is in the process of committing
2019-08-31 15:50:28 [INFO ]  [LocalJobRunner Map Task Executor #0]  [org.apache.hadoop.mapred.LocalJobRunner] map
2019-08-31 15:50:28 [INFO ]  [LocalJobRunner Map Task Executor #0]  [org.apache.hadoop.mapred.Task] Task 'attempt_local83653871_0001_m_000002_0' done.
2019-08-31 15:50:28 [INFO ]  [LocalJobRunner Map Task Executor #0]  [org.apache.hadoop.mapred.LocalJobRunner] Finishing task: attempt_local83653871_0001_m_000002_0
2019-08-31 15:50:28 [INFO ]  [Thread-3]  [org.apache.hadoop.mapred.LocalJobRunner] map task executor complete.
2019-08-31 15:50:28 [INFO ]  [Thread-3]  [org.apache.hadoop.mapred.LocalJobRunner] Waiting for reduce tasks
2019-08-31 15:50:28 [INFO ]  [pool-6-thread-1]  [org.apache.hadoop.mapred.LocalJobRunner] Starting task: attempt_local83653871_0001_r_000000_0
2019-08-31 15:50:28 [INFO ]  [pool-6-thread-1]  [org.apache.hadoop.mapreduce.lib.output.FileOutputCommitter] File Output Committer Algorithm version is 1
2019-08-31 15:50:28 [INFO ]  [pool-6-thread-1]  [org.apache.hadoop.yarn.util.ProcfsBasedProcessTree] ProcfsBasedProcessTree currently is supported only on Linux.
2019-08-31 15:50:28 [INFO ]  [pool-6-thread-1]  [org.apache.hadoop.mapred.Task]  Using ResourceCalculatorProcessTree : org.apache.hadoop.yarn.util.WindowsBasedProcessTree@4309aafd
2019-08-31 15:50:28 [INFO ]  [pool-6-thread-1]  [org.apache.hadoop.mapred.ReduceTask] Using ShuffleConsumerPlugin: org.apache.hadoop.mapreduce.task.reduce.Shuffle@44113ec8
2019-08-31 15:50:28 [INFO ]  [pool-6-thread-1]  [org.apache.hadoop.mapreduce.task.reduce.MergeManagerImpl] MergerManager: memoryLimit=1265788544, maxSingleShuffleLimit=316447136, mergeThreshold=835420480, ioSortFactor=10, memToMemMergeOutputsThreshold=10
2019-08-31 15:50:28 [INFO ]  [EventFetcher for fetching Map Completion Events]  [org.apache.hadoop.mapreduce.task.reduce.EventFetcher] attempt_local83653871_0001_r_000000_0 Thread started: EventFetcher for fetching Map Completion Events
2019-08-31 15:50:28 [INFO ]  [localfetcher#1]  [org.apache.hadoop.mapreduce.task.reduce.LocalFetcher] localfetcher#1 about to shuffle output of map attempt_local83653871_0001_m_000000_0 decomp: 70 len: 74 to MEMORY
2019-08-31 15:50:28 [INFO ]  [localfetcher#1]  [org.apache.hadoop.mapreduce.task.reduce.InMemoryMapOutput] Read 70 bytes from map-output for attempt_local83653871_0001_m_000000_0
2019-08-31 15:50:28 [INFO ]  [localfetcher#1]  [org.apache.hadoop.mapreduce.task.reduce.MergeManagerImpl] closeInMemoryFile -> map-output of size: 70, inMemoryMapOutputs.size() -> 1, commitMemory -> 0, usedMemory ->70
2019-08-31 15:50:28 [INFO ]  [localfetcher#1]  [org.apache.hadoop.mapreduce.task.reduce.LocalFetcher] localfetcher#1 about to shuffle output of map attempt_local83653871_0001_m_000001_0 decomp: 70 len: 74 to MEMORY
2019-08-31 15:50:28 [INFO ]  [localfetcher#1]  [org.apache.hadoop.mapreduce.task.reduce.InMemoryMapOutput] Read 70 bytes from map-output for attempt_local83653871_0001_m_000001_0
2019-08-31 15:50:28 [INFO ]  [localfetcher#1]  [org.apache.hadoop.mapreduce.task.reduce.MergeManagerImpl] closeInMemoryFile -> map-output of size: 70, inMemoryMapOutputs.size() -> 2, commitMemory -> 70, usedMemory ->140
2019-08-31 15:50:28 [INFO ]  [localfetcher#1]  [org.apache.hadoop.mapreduce.task.reduce.LocalFetcher] localfetcher#1 about to shuffle output of map attempt_local83653871_0001_m_000002_0 decomp: 70 len: 74 to MEMORY
2019-08-31 15:50:28 [INFO ]  [localfetcher#1]  [org.apache.hadoop.mapreduce.task.reduce.InMemoryMapOutput] Read 70 bytes from map-output for attempt_local83653871_0001_m_000002_0
2019-08-31 15:50:28 [INFO ]  [localfetcher#1]  [org.apache.hadoop.mapreduce.task.reduce.MergeManagerImpl] closeInMemoryFile -> map-output of size: 70, inMemoryMapOutputs.size() -> 3, commitMemory -> 140, usedMemory ->210
2019-08-31 15:50:28 [INFO ]  [EventFetcher for fetching Map Completion Events]  [org.apache.hadoop.mapreduce.task.reduce.EventFetcher] EventFetcher is interrupted.. Returning
2019-08-31 15:50:28 [INFO ]  [pool-6-thread-1]  [org.apache.hadoop.mapred.LocalJobRunner] 3 / 3 copied.
2019-08-31 15:50:28 [INFO ]  [pool-6-thread-1]  [org.apache.hadoop.mapreduce.task.reduce.MergeManagerImpl] finalMerge called with 3 in-memory map-outputs and 0 on-disk map-outputs
2019-08-31 15:50:28 [INFO ]  [pool-6-thread-1]  [org.apache.hadoop.mapred.Merger] Merging 3 sorted segments
2019-08-31 15:50:28 [INFO ]  [pool-6-thread-1]  [org.apache.hadoop.mapred.Merger] Down to the last merge-pass, with 3 segments left of total size: 174 bytes
2019-08-31 15:50:28 [INFO ]  [pool-6-thread-1]  [org.apache.hadoop.mapreduce.task.reduce.MergeManagerImpl] Merged 3 segments, 210 bytes to disk to satisfy reduce memory limit
2019-08-31 15:50:28 [INFO ]  [pool-6-thread-1]  [org.apache.hadoop.mapreduce.task.reduce.MergeManagerImpl] Merging 1 files, 210 bytes from disk
2019-08-31 15:50:28 [INFO ]  [pool-6-thread-1]  [org.apache.hadoop.mapreduce.task.reduce.MergeManagerImpl] Merging 0 segments, 0 bytes from memory into reduce
2019-08-31 15:50:28 [INFO ]  [pool-6-thread-1]  [org.apache.hadoop.mapred.Merger] Merging 1 sorted segments
2019-08-31 15:50:28 [INFO ]  [pool-6-thread-1]  [org.apache.hadoop.mapred.Merger] Down to the last merge-pass, with 1 segments left of total size: 194 bytes
2019-08-31 15:50:28 [INFO ]  [pool-6-thread-1]  [org.apache.hadoop.mapred.LocalJobRunner] 3 / 3 copied.
2019-08-31 15:50:28 [INFO ]  [main]  [org.apache.hadoop.mapreduce.Job] Job job_local83653871_0001 running in uber mode : false
2019-08-31 15:50:28 [INFO ]  [main]  [org.apache.hadoop.mapreduce.Job]  map 100% reduce 0%
2019-08-31 15:50:28 [INFO ]  [pool-6-thread-1]  [org.apache.hadoop.conf.Configuration.deprecation] mapred.skip.on is deprecated. Instead, use mapreduce.job.skiprecords
2019-08-31 15:50:29 [INFO ]  [pool-6-thread-1]  [org.apache.hadoop.mapred.Task] Task:attempt_local83653871_0001_r_000000_0 is done. And is in the process of committing
2019-08-31 15:50:29 [INFO ]  [pool-6-thread-1]  [org.apache.hadoop.mapred.LocalJobRunner] 3 / 3 copied.
2019-08-31 15:50:29 [INFO ]  [pool-6-thread-1]  [org.apache.hadoop.mapred.Task] Task attempt_local83653871_0001_r_000000_0 is allowed to commit now
2019-08-31 15:50:29 [INFO ]  [pool-6-thread-1]  [org.apache.hadoop.mapreduce.lib.output.FileOutputCommitter] Saved output of task 'attempt_local83653871_0001_r_000000_0' to hdfs://192.168.56.202:9000/user/root/averagescore/output/_temporary/0/task_local83653871_0001_r_000000
2019-08-31 15:50:29 [INFO ]  [pool-6-thread-1]  [org.apache.hadoop.mapred.LocalJobRunner] reduce > reduce
2019-08-31 15:50:29 [INFO ]  [pool-6-thread-1]  [org.apache.hadoop.mapred.Task] Task 'attempt_local83653871_0001_r_000000_0' done.
2019-08-31 15:50:29 [INFO ]  [pool-6-thread-1]  [org.apache.hadoop.mapred.LocalJobRunner] Finishing task: attempt_local83653871_0001_r_000000_0
2019-08-31 15:50:29 [INFO ]  [Thread-3]  [org.apache.hadoop.mapred.LocalJobRunner] reduce task executor complete.
2019-08-31 15:50:29 [INFO ]  [main]  [org.apache.hadoop.mapreduce.Job]  map 100% reduce 100%
2019-08-31 15:50:29 [INFO ]  [main]  [org.apache.hadoop.mapreduce.Job] Job job_local83653871_0001 completed successfully
2019-08-31 15:50:29 [INFO ]  [main]  [org.apache.hadoop.mapreduce.Job] Counters: 35File System CountersFILE: Number of bytes read=4456FILE: Number of bytes written=1087800FILE: Number of read operations=0FILE: Number of large read operations=0FILE: Number of write operations=0HDFS: Number of bytes read=488HDFS: Number of bytes written=63HDFS: Number of read operations=33HDFS: Number of large read operations=0HDFS: Number of write operations=6Map-Reduce FrameworkMap input records=15Map output records=15Map output bytes=174Map output materialized bytes=222Input split bytes=393Combine input records=0Combine output records=0Reduce input groups=5Reduce shuffle bytes=222Reduce input records=15Reduce output records=5Spilled Records=30Shuffled Maps =3Failed Shuffles=0Merged Map outputs=3GC time elapsed (ms)=27Total committed heap usage (bytes)=1493172224Shuffle ErrorsBAD_ID=0CONNECTION=0IO_ERROR=0WRONG_LENGTH=0WRONG_MAP=0WRONG_REDUCE=0File Input Format Counters Bytes Read=162File Output Format Counters Bytes Written=63

运行完毕,查看结果:

 

这篇关于MapReduce编程开发之求平均成绩的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/171731

相关文章

Android开发中gradle下载缓慢的问题级解决方法

《Android开发中gradle下载缓慢的问题级解决方法》本文介绍了解决Android开发中Gradle下载缓慢问题的几种方法,本文给大家介绍的非常详细,感兴趣的朋友跟随小编一起看看吧... 目录一、网络环境优化二、Gradle版本与配置优化三、其他优化措施针对android开发中Gradle下载缓慢的问

使用Go语言开发一个命令行文件管理工具

《使用Go语言开发一个命令行文件管理工具》这篇文章主要为大家详细介绍了如何使用Go语言开发一款命令行文件管理工具,支持批量重命名,删除,创建,移动文件,需要的小伙伴可以了解下... 目录一、工具功能一览二、核心代码解析1. 主程序结构2. 批量重命名3. 批量删除4. 创建文件/目录5. 批量移动三、如何安

Android 悬浮窗开发示例((动态权限请求 | 前台服务和通知 | 悬浮窗创建 )

《Android悬浮窗开发示例((动态权限请求|前台服务和通知|悬浮窗创建)》本文介绍了Android悬浮窗的实现效果,包括动态权限请求、前台服务和通知的使用,悬浮窗权限需要动态申请并引导... 目录一、悬浮窗 动态权限请求1、动态请求权限2、悬浮窗权限说明3、检查动态权限4、申请动态权限5、权限设置完毕后

基于Python开发PPTX压缩工具

《基于Python开发PPTX压缩工具》在日常办公中,PPT文件往往因为图片过大而导致文件体积过大,不便于传输和存储,所以本文将使用Python开发一个PPTX压缩工具,需要的可以了解下... 目录引言全部代码环境准备代码结构代码实现运行结果引言在日常办公中,PPT文件往往因为图片过大而导致文件体积过大,

C#多线程编程中导致死锁的常见陷阱和避免方法

《C#多线程编程中导致死锁的常见陷阱和避免方法》在C#多线程编程中,死锁(Deadlock)是一种常见的、令人头疼的错误,死锁通常发生在多个线程试图获取多个资源的锁时,导致相互等待对方释放资源,最终形... 目录引言1. 什么是死锁?死锁的典型条件:2. 导致死锁的常见原因2.1 锁的顺序问题错误示例:不同

使用DeepSeek API 结合VSCode提升开发效率

《使用DeepSeekAPI结合VSCode提升开发效率》:本文主要介绍DeepSeekAPI与VisualStudioCode(VSCode)结合使用,以提升软件开发效率,具有一定的参考价值... 目录引言准备工作安装必要的 VSCode 扩展配置 DeepSeek API1. 创建 API 请求文件2.

PyCharm接入DeepSeek实现AI编程的操作流程

《PyCharm接入DeepSeek实现AI编程的操作流程》DeepSeek是一家专注于人工智能技术研发的公司,致力于开发高性能、低成本的AI模型,接下来,我们把DeepSeek接入到PyCharm中... 目录引言效果演示创建API key在PyCharm中下载Continue插件配置Continue引言

基于Python开发电脑定时关机工具

《基于Python开发电脑定时关机工具》这篇文章主要为大家详细介绍了如何基于Python开发一个电脑定时关机工具,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 简介2. 运行效果3. 相关源码1. 简介这个程序就像一个“忠实的管家”,帮你按时关掉电脑,而且全程不需要你多做

Java中的Opencv简介与开发环境部署方法

《Java中的Opencv简介与开发环境部署方法》OpenCV是一个开源的计算机视觉和图像处理库,提供了丰富的图像处理算法和工具,它支持多种图像处理和计算机视觉算法,可以用于物体识别与跟踪、图像分割与... 目录1.Opencv简介Opencv的应用2.Java使用OpenCV进行图像操作opencv安装j

基于Qt开发一个简单的OFD阅读器

《基于Qt开发一个简单的OFD阅读器》这篇文章主要为大家详细介绍了如何使用Qt框架开发一个功能强大且性能优异的OFD阅读器,文中的示例代码讲解详细,有需要的小伙伴可以参考一下... 目录摘要引言一、OFD文件格式解析二、文档结构解析三、页面渲染四、用户交互五、性能优化六、示例代码七、未来发展方向八、结论摘要