格密码基础(3)-SIS,LWE

2023-10-09 07:59
文章标签 基础 密码 lwe sis

本文主要是介绍格密码基础(3)-SIS,LWE,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

格密码基础(3)-SIS,LWE

这篇博文的主要内容是关于两个在现代格密码系统构造最基础的平均情况问题(SIS,LWE)以及他们的环变体(R-SIS,R-LWE)。

1.小整数解问题(SIS)


给定 m m m a 1 , … , a m a_1,\dots,a_m a1,,am随机向量, a i ∈ Z q n a_i\in\mathbb Z^n_q aiZqn。寻找一组非平凡解(简单理解:非零 ) z 1 , … , z m ∈ { − 1 , 0 , 1 } z_1,\dots ,z_m \in\{-1,0,1\} z1,,zm{1,0,1},使得 ∑ i = 0 m z i a i = 0 ∈ Z q n \sum \limits_{i=0}^mz_ia_i=0\in \mathbb Z^n_q i=0mziai=0Zqn


在这里插入图片描述

假设我们不对 z i z_i zi的大小进行限制,那么问题就不是困难的

SIS问题可以被看作是平均情况下在 q q q m m m维格上的SVP问题,这个 q q q m m m维格:
L ⊥ ( A ) : = { z ∈ Z m : A z = 0 ∈ Z q n } ⊇ q Z m L^\perp(A):=\{z\in \mathbb Z^m:Az=0 \in \mathbb Z^n_q \} \supseteq q\mathbb Z^m L(A):={zZm:Az=0Zqn}qZm
SIS问题就相当于是从格 L ⊥ ( A ) L^\perp(A) L(A)中找到一个足够短的非零向量,且A为均匀随机选择的。

还有一个非齐次版本的SIS问题, ∑ i = 0 m z i a i = u ∈ Z q n \sum \limits_{i=0}^mz_ia_i=u\in \mathbb Z^n_q i=0mziai=uZqn。这种情况下的解空间 L u ⊥ ( A ) L^\perp_u(A) Lu(A)可以用 c + L ⊥ ( A ) c+L^\perp(A) c+L(A)

来表示( c ∈ Z m c\in \mathbb Z^m cZm, c c c并不要求短),这个版本和齐次版本的问题基本等价。

2.容错学习问题(LWE)

2.1简单理解

给出下列几个多项式:
$$
14⋅𝑠_1+15⋅𝑠_2+5⋅𝑠_3+2⋅𝑠_4≈8𝑚𝑜𝑑17\

13⋅𝑠_1+14⋅𝑠_2+14⋅𝑠_3+6⋅𝑠_4≈16𝑚𝑜𝑑17\

6⋅𝑠_1+10⋅𝑠_2+13⋅𝑠_3+1⋅𝑠_4≈3𝑚𝑜𝑑17\
\dots
$$
要求从中求出 s 1 , s 2 , s 3 , s 4 s_1,s_2,s_3,s_4 s1,s2,s3,s4

假如所有的“≈”都换成“=”,那么这个问题将变得十分容易,只需要简单的高斯消元就可以解决。但是因为误差的引入,所以使得高斯消元无法解决现在的问题,(即从 A x = d Ax=d Ax=d求解 x x x,变成了 A x + e = d Ax+e=d Ax+e=d求解 x x x)。

2.2 LWE

关于LWE问题主要有两个版本的定义:搜索版本和判断版本。顾名思义,搜索版本就是从给出的问题中找到答案,而判断问题则主要是考察是否有能力区分。

在给出问题定义之前,先定义一个分布:

定义2.2.1 LWE分布

对于一组秘密向量 s ∈ Z q n s\in\mathbb Z^n_q sZqn,LWE分布为 A s , χ ∈ Z q n × Z q A_{s,\chi}\in \mathbb Z^n_q\times\mathbb Z_q As,χZqn×Zq。从中随机选择一个 a ∈ Z q n a\in\mathbb Z^n_q aZqn,选择一个向量 e ← χ e\leftarrow \chi eχ,输出 ( a , b = < s , a > + e m o d q ) (a,b=<s,a>+e\mod q) ab=<s,a>+emodq)


定义2.2.2 Search-LWE n , q , χ , m _{n,q,\chi,m} n,q,χ,m

给定 m m m个独立抽样$(a_i,b_i)\in\mathbb Z^n_q\times \mathbb Z_q 选 自 选自 A_{s,\chi} , 找 出 随 机 均 匀 变 量 ,找出随机均匀变量 s$。


定义2.2.3 Decision-LWE n , q , χ , m _{n,q,\chi,m} n,q,χ,m

给定 m m m个独立抽样$(a_i,b_i)\in\mathbb Z^n_q\times \mathbb Z_q , 能 否 以 不 可 忽 略 优 势 来 分 辨 出 每 个 抽 样 是 来 自 : ( 1 ) ,能否以不可忽略优势来分辨出每个抽样是来自:(1) :(1)A_{s,\chi} , s 是 随 机 均 匀 选 自 ,s是随机均匀选自 s\mathbb Z^n_q$,或者(2)均匀分布。


3.R-SIS

3.1 定义

环上的SIS变体的提出者是受到了NTRU密码方案的启发,主要增加的元素就是环R,这里的环就是NTRU中的所用的n维多项式环 R = Z [ X ] / ( f ( X ) ) , e . g . , f ( X ) = X n − 1 R=\mathbb Z[X]/(f(X)),e.g.,f(X)=X^n-1 R=Z[X]/(f(X)),e.g.,f(X)=Xn1

定义3.1 R-SIS q , β , m _{q,\beta,m} q,β,m

给定 m m m a 1 , … , a m a_1,\dots,a_m a1,,am随机多项式, a i ∈ R q a_i\in R_q aiRq,定义 a → ∈ R q m \stackrel{\rightarrow}{a}\in R^m_q aRqm。寻找非零向量 z → ∈ R m \stackrel{\rightarrow}{z} \in R^m zRm,**且满足 ∥ z → ∥ ≤ β \|\stackrel{\rightarrow}{z}\|\leq\beta zβ**使得 ∑ i z i ⋅ a i = 0 ∈ R q \sum \limits_{i}z_i \cdot a_i=0\in R_q iziai=0Rq,且 0 < max ⁡ ∥ ( x i ) ∥ ≤ β 0<\max\|(x_i)\|\leq \beta 0<max(xi)β


4.R-LWE

待续 … \dots

这篇关于格密码基础(3)-SIS,LWE的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/171460

相关文章

MySQL8 密码强度评估与配置详解

《MySQL8密码强度评估与配置详解》MySQL8默认启用密码强度插件,实施MEDIUM策略(长度8、含数字/字母/特殊字符),支持动态调整与配置文件设置,推荐使用STRONG策略并定期更新密码以提... 目录一、mysql 8 密码强度评估机制1.核心插件:validate_password2.密码策略级

从基础到高级详解Python数值格式化输出的完全指南

《从基础到高级详解Python数值格式化输出的完全指南》在数据分析、金融计算和科学报告领域,数值格式化是提升可读性和专业性的关键技术,本文将深入解析Python中数值格式化输出的相关方法,感兴趣的小伙... 目录引言:数值格式化的核心价值一、基础格式化方法1.1 三种核心格式化方式对比1.2 基础格式化示例

redis-sentinel基础概念及部署流程

《redis-sentinel基础概念及部署流程》RedisSentinel是Redis的高可用解决方案,通过监控主从节点、自动故障转移、通知机制及配置提供,实现集群故障恢复与服务持续可用,核心组件包... 目录一. 引言二. 核心功能三. 核心组件四. 故障转移流程五. 服务部署六. sentinel部署

从基础到进阶详解Python条件判断的实用指南

《从基础到进阶详解Python条件判断的实用指南》本文将通过15个实战案例,带你大家掌握条件判断的核心技巧,并从基础语法到高级应用一网打尽,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录​引言:条件判断为何如此重要一、基础语法:三行代码构建决策系统二、多条件分支:elif的魔法三、

Python WebSockets 库从基础到实战使用举例

《PythonWebSockets库从基础到实战使用举例》WebSocket是一种全双工、持久化的网络通信协议,适用于需要低延迟的应用,如实时聊天、股票行情推送、在线协作、多人游戏等,本文给大家介... 目录1. 引言2. 为什么使用 WebSocket?3. 安装 WebSockets 库4. 使用 We

MySQL设置密码复杂度策略的完整步骤(附代码示例)

《MySQL设置密码复杂度策略的完整步骤(附代码示例)》MySQL密码策略还可能包括密码复杂度的检查,如是否要求密码包含大写字母、小写字母、数字和特殊字符等,:本文主要介绍MySQL设置密码复杂度... 目录前言1. 使用 validate_password 插件1.1 启用 validate_passwo

从基础到高阶详解Python多态实战应用指南

《从基础到高阶详解Python多态实战应用指南》这篇文章主要从基础到高阶为大家详细介绍Python中多态的相关应用与技巧,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、多态的本质:python的“鸭子类型”哲学二、多态的三大实战场景场景1:数据处理管道——统一处理不同数据格式

MySQL数据类型与表操作全指南( 从基础到高级实践)

《MySQL数据类型与表操作全指南(从基础到高级实践)》本文详解MySQL数据类型分类(数值、日期/时间、字符串)及表操作(创建、修改、维护),涵盖优化技巧如数据类型选择、备份、分区,强调规范设计与... 目录mysql数据类型详解数值类型日期时间类型字符串类型表操作全解析创建表修改表结构添加列修改列删除列

Python 函数详解:从基础语法到高级使用技巧

《Python函数详解:从基础语法到高级使用技巧》本文基于实例代码,全面讲解Python函数的定义、参数传递、变量作用域及类型标注等知识点,帮助初学者快速掌握函数的使用技巧,感兴趣的朋友跟随小编一起... 目录一、函数的基本概念与作用二、函数的定义与调用1. 无参函数2. 带参函数3. 带返回值的函数4.

python panda库从基础到高级操作分析

《pythonpanda库从基础到高级操作分析》本文介绍了Pandas库的核心功能,包括处理结构化数据的Series和DataFrame数据结构,数据读取、清洗、分组聚合、合并、时间序列分析及大数据... 目录1. Pandas 概述2. 基本操作:数据读取与查看3. 索引操作:精准定位数据4. Group