波奇学C++:用红黑树模拟实现map和set

2023-10-09 06:20

本文主要是介绍波奇学C++:用红黑树模拟实现map和set,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

用同一个树的类模板封装map(key/value)和set(key)

红黑树的Node

template<class T>
struct RBTreeNode
{RBTreeNode<T>* _left;RBTreeNode<T>* _right;RBTreeNode<T>* _parent;T _data;Colour _col;RBTreeNode(const T& data):_left(nullptr),_right(nullptr),_parent(nullptr),_data(data),_col(BLACK){}
};

用只有一个data变量来代替map的pair<key,value> 和set的key

template<class key,class T,class KeyOfT>
struct RBTree

看红黑树的模板的我们依然保留key模板,对于Set来说key和T都是value的,对于map来说key 是 key,T是pair<key,value>。

RBTree<K, pair<K, V>,MapKeyOfT> _t;
RBTree<K, K,SetKeyOfT> _t;

由此相当于适配器模式,对于set来说第二个模板参数不是必要的。

由此我们可以思考,我们对两个对象的封装可以先统一起来某种形式,比如都提供两个模板参数。

红黑树的insert返回值由原来的bool变成了pair<iterator,bool>

pair<iterator,bool> Insert(const T& data)
//......
return make_pair(iterator(newnode), true);
//

注意实际上map和set的迭代器属性不一样,但我们返回权限大的普通迭代器,后面再分别进行const限制来适配

typedef __TreeIterator<T,T*,T&> iterator;

写红黑树的迭代器

template<class T, class Ptr, class Ref>
struct __TreeIterator
{typedef RBTreeNode Node;typedef __TreeIterator< T, Ptr, Ref> Self;// Iterator只可能是普通迭代器typedef __TreeIterator< T, T*, T&> Iterator;Node* _node;__TreeIterator(const Iterator& It):_node(It._node){}__TreeIterator(Node* node):_node(node){}Ref operator*(){return _node->_data;}Ptr operator->(){return &_node->_data;}Self& operator++(){//右边不为空if (_node->right){Node* leftmin = _node->_right;while (leftmin->_left){leftmin = leftmin->_left;}_node = leftmin;return *this;}else{// 右树为空Node* parent = _node->_parent;while (parent&&_node == parent->right){_node = parent;parent = _node->_parent;}_node = parent;return *this;}}bool operator!=(const Iterator it)const{return _node != it._node;}bool operator==(const Iterator)const{return _node == it._node;}Self& operator--(){//左不为空if (_node->_left){Node* rightmax = _node->_left;while (rightmax->_right){rightmax = rightmax->_right;}_node = rightmax;return *this;}else{Node* parent = _node->_parent;while (parent && parent->_right == _node){_node = parent;parent = _node->_parent;}_node = parent;return *this;}}};

比较重要的点是拷贝构造函数

__TreeIterator(const Iterator& It):_node(It._node){}

对于普通迭代器,是拷贝构造,同时它也可以接收普通迭代器来构造const 修饰的迭代器。

operate()++的分析

当右树存在时,再右子树的最大值,当右树不存在,找到parent节点向上处理,当cur是parentd1左节点时,parent就是下一个节点。

红黑树的begin(),end()方法 

typedef __TreeIterator<T,T*,T&> iterator;typedef __TreeIterator<T, const T*, const T&> const_iterator;iterator begin(){Node* leftMin = _root;while (leftMin && leftMin->_left){leftMin=leftMin->_left;}return iterator(leftMin);}iterator end(){return iterator(nullptr);}const_iterator begin()const{Node* leftMin = _root;while (leftMin && leftMin->_left){leftMin = leftMin->_left;}return const_iterator(leftMin);}const_iterator end()const{return const_iterator(nullptr);}

这里用了没有直接返回Node*指针而是返回迭代器对象,调用拷贝构造函数。

map和set的迭代器有不同的需求,对于set而言,iterator就是const_iterator。

typedef typename RBTree<K, K, SetKeyOfT>::const_iterator iterator;
typedef typename RBTree<K, K, SetKeyOfT>::const_iterator const_iterator;

set的begin() 

iterator begin()
{return _t.begin();
}

当begin()调用时 _t.begin()返回的是iterator这是就是可以通过__TreeIterator的拷贝构造实现转换成Iterator,(其实可以直接调用const的begin()修饰的函数)

insert封装

pair<iterator, bool> insert(const K& key){pair<typename RBTree<K, K, SetKeyOfT>::iterator, bool>ret = _t.Insert(key);return pair<iterator, bool>(ret.first, ret.second);}

注意此时的问题,insert规定返回值必须是pair<iterator, bool>,RBTree返回的值实际是iterator,myset返回的iterator实际是const_iterator。不能直接返回会导致权限的缩小,所以要再构造。

而map的迭代器要确保pair<key,value>的key不会改变。方法是给模板参数上const

typedef typename RBTree<K, pair<const K, V>, MapKeyOfT>::iterator iterator;
typedef typename RBTree<K, pair<const K, V>, MapKeyOfT>::const_iterator const_iterator;

这篇关于波奇学C++:用红黑树模拟实现map和set的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/170926

相关文章

Kotlin Map映射转换问题小结

《KotlinMap映射转换问题小结》文章介绍了Kotlin集合转换的多种方法,包括map(一对一转换)、mapIndexed(带索引)、mapNotNull(过滤null)、mapKeys/map... 目录Kotlin 集合转换:map、mapIndexed、mapNotNull、mapKeys、map

python生成随机唯一id的几种实现方法

《python生成随机唯一id的几种实现方法》在Python中生成随机唯一ID有多种方法,根据不同的需求场景可以选择最适合的方案,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起学习学习... 目录方法 1:使用 UUID 模块(推荐)方法 2:使用 Secrets 模块(安全敏感场景)方法

C++中全局变量和局部变量的区别

《C++中全局变量和局部变量的区别》本文主要介绍了C++中全局变量和局部变量的区别,全局变量和局部变量在作用域和生命周期上有显著的区别,下面就来介绍一下,感兴趣的可以了解一下... 目录一、全局变量定义生命周期存储位置代码示例输出二、局部变量定义生命周期存储位置代码示例输出三、全局变量和局部变量的区别作用域

C++中assign函数的使用

《C++中assign函数的使用》在C++标准模板库中,std::list等容器都提供了assign成员函数,它比操作符更灵活,支持多种初始化方式,下面就来介绍一下assign的用法,具有一定的参考价... 目录​1.assign的基本功能​​语法​2. 具体用法示例​​​(1) 填充n个相同值​​(2)

Spring StateMachine实现状态机使用示例详解

《SpringStateMachine实现状态机使用示例详解》本文介绍SpringStateMachine实现状态机的步骤,包括依赖导入、枚举定义、状态转移规则配置、上下文管理及服务调用示例,重点解... 目录什么是状态机使用示例什么是状态机状态机是计算机科学中的​​核心建模工具​​,用于描述对象在其生命

Spring Boot 结合 WxJava 实现文章上传微信公众号草稿箱与群发

《SpringBoot结合WxJava实现文章上传微信公众号草稿箱与群发》本文将详细介绍如何使用SpringBoot框架结合WxJava开发工具包,实现文章上传到微信公众号草稿箱以及群发功能,... 目录一、项目环境准备1.1 开发环境1.2 微信公众号准备二、Spring Boot 项目搭建2.1 创建

IntelliJ IDEA2025创建SpringBoot项目的实现步骤

《IntelliJIDEA2025创建SpringBoot项目的实现步骤》本文主要介绍了IntelliJIDEA2025创建SpringBoot项目的实现步骤,文中通过示例代码介绍的非常详细,对大家... 目录一、创建 Spring Boot 项目1. 新建项目2. 基础配置3. 选择依赖4. 生成项目5.

Linux下删除乱码文件和目录的实现方式

《Linux下删除乱码文件和目录的实现方式》:本文主要介绍Linux下删除乱码文件和目录的实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录linux下删除乱码文件和目录方法1方法2总结Linux下删除乱码文件和目录方法1使用ls -i命令找到文件或目录

SpringBoot+EasyExcel实现自定义复杂样式导入导出

《SpringBoot+EasyExcel实现自定义复杂样式导入导出》这篇文章主要为大家详细介绍了SpringBoot如何结果EasyExcel实现自定义复杂样式导入导出功能,文中的示例代码讲解详细,... 目录安装处理自定义导出复杂场景1、列不固定,动态列2、动态下拉3、自定义锁定行/列,添加密码4、合并

mybatis执行insert返回id实现详解

《mybatis执行insert返回id实现详解》MyBatis插入操作默认返回受影响行数,需通过useGeneratedKeys+keyProperty或selectKey获取主键ID,确保主键为自... 目录 两种方式获取自增 ID:1. ​​useGeneratedKeys+keyProperty(推