脑补|yarn能并行运行任务总数~

2023-10-09 03:08

本文主要是介绍脑补|yarn能并行运行任务总数~,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

最近知识星球没动静主要原因是知识星球他们在做系统升级,我也很无奈,由此给球友带来的不安,深感抱歉。

前几天球友问了我一个问题:

请问浪总,集群400GB内存,提交了10个任务后就不能继续提交任务了,
资源还剩余300GB,CPU也很充足,完全满足新任务的资源,为啥就不能提交新任务了呢???

各位同仁也可以先思考一下可能的原因及解决方案。

估计很多人会说:

 

很明显,新任务申请的资源,大于了可提供的资源了~

但是这位球友说的很清楚了,剩余的资源很充足,完全可以提供新任务所需的资源。

知识点小贴士~

对spark on yarn研究比较多的朋友都应该发现过你明明给executor申请了1GB内存,结果发现该executor占用了yarn的2GB内存。

其实,对于spark的driver和executor在申请内存的时候有个计算公式:

spark.yarn.am.memoryOverhead 
除了指定的申请资源外额外申请(yarn-client模式):
AM memory * 0.10, with minimum of 384

spark.driver.memoryOverhead
除了指定的申请资源外,额外申请:
driverMemory * 0.10, with minimum of 384

spark.executor.memoryOverhead
除了指定的申请资源外,额外申请:
executorMemory * 0.10, with minimum of 384

由于1GB*0.10才100MB,所以会是1GB+384MB<2GB,不符合预期。实际上这个还依赖于yarn的内存调度粒度。resourcemanager的参数:
 

最小值
<property>
<name>yarn.scheduler.minimum-allocation-mb</name>
<value>1024</value>
</property>
最大值
<property>
<name>yarn.scheduler.maximum-allocation-mb</name>
<value>20480</value>
</property>

默认yarn的调度最小单元就是1GB,所以结果就是使你原本申请1GB(+额外内存)的内存变为了2GB。

读到这里估计很多同学该说了,这个我了解但是貌似跟yarn最大并行度没什么关系呀?别急!

重磅来袭~

其实,yarn为了很方便控制在运行的任务数,也即是处于running状态任务的数目,提供了一个重要的参数配置,但是很容易被忽略。

 

<property>
<name>yarn.scheduler.capacity.maximum-am-resource-percent</name>
<value>0.1</value>
<description> Maximum percent of resources in the cluster which can be used to run application masters i.e. controls number of concurrent running applications. </description>
</property>

配置文件是:hadoop-2.7.4/etc/hadoop/capacity-scheduler.xml

参数含义很明显就是所有AM占用的总内存数要小于yarn所管理总内存的一定比例,默认是0.1。

也即是yarn所能同时运行的任务数受限于该参数和单个AM的内存。

那么回归本话题,可以看看该同学所能申请的AM总内存的大小是:

400GB*0.1=40GB。

但是,该同学配置的yarn的内存调度最小单元是4GB,这样虽然他申请的任务AM每个都是1GB,但是由于调度单位是4GB,所以在这里实际内存就是4GB,刚好10个任务40GB,也就不能提交第11个任务了。

所以需要将调度内存调到默认值1GB,其实一般情况下没必要调整,然后将AM总内存占比提高,比如1,即可。

好了,更多优良知识欢迎加入浪尖知识星球。

推荐阅读:

spark面试该准备点啥

不可不知的spark shuffle

640?wx_fmt=png

这篇关于脑补|yarn能并行运行任务总数~的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/169910

相关文章

pycharm远程连接服务器运行pytorch的过程详解

《pycharm远程连接服务器运行pytorch的过程详解》:本文主要介绍在Linux环境下使用Anaconda管理不同版本的Python环境,并通过PyCharm远程连接服务器来运行PyTorc... 目录linux部署pytorch背景介绍Anaconda安装Linux安装pytorch虚拟环境安装cu

通过prometheus监控Tomcat运行状态的操作流程

《通过prometheus监控Tomcat运行状态的操作流程》文章介绍了如何安装和配置Tomcat,并使用Prometheus和TomcatExporter来监控Tomcat的运行状态,文章详细讲解了... 目录Tomcat安装配置以及prometheus监控Tomcat一. 安装并配置tomcat1、安装

Spring Boot 整合 ShedLock 处理定时任务重复执行的问题小结

《SpringBoot整合ShedLock处理定时任务重复执行的问题小结》ShedLock是解决分布式系统中定时任务重复执行问题的Java库,通过在数据库中加锁,确保只有一个节点在指定时间执行... 目录前言什么是 ShedLock?ShedLock 的工作原理:定时任务重复执行China编程的问题使用 Shed

mysqld_multi在Linux服务器上运行多个MySQL实例

《mysqld_multi在Linux服务器上运行多个MySQL实例》在Linux系统上使用mysqld_multi来启动和管理多个MySQL实例是一种常见的做法,这种方式允许你在同一台机器上运行多个... 目录1. 安装mysql2. 配置文件示例配置文件3. 创建数据目录4. 启动和管理实例启动所有实例

IDEA运行spring项目时,控制台未出现的解决方案

《IDEA运行spring项目时,控制台未出现的解决方案》文章总结了在使用IDEA运行代码时,控制台未出现的问题和解决方案,问题可能是由于点击图标或重启IDEA后控制台仍未显示,解决方案提供了解决方法... 目录问题分析解决方案总结问题js使用IDEA,点击运行按钮,运行结束,但控制台未出现http://

解决Spring运行时报错:Consider defining a bean of type ‘xxx.xxx.xxx.Xxx‘ in your configuration

《解决Spring运行时报错:Considerdefiningabeanoftype‘xxx.xxx.xxx.Xxx‘inyourconfiguration》该文章主要讲述了在使用S... 目录问题分析解决方案总结问题Description:Parameter 0 of constructor in x

解决IDEA使用springBoot创建项目,lombok标注实体类后编译无报错,但是运行时报错问题

《解决IDEA使用springBoot创建项目,lombok标注实体类后编译无报错,但是运行时报错问题》文章详细描述了在使用lombok的@Data注解标注实体类时遇到编译无误但运行时报错的问题,分析... 目录问题分析问题解决方案步骤一步骤二步骤三总结问题使用lombok注解@Data标注实体类,编译时

Python Invoke自动化任务库的使用

《PythonInvoke自动化任务库的使用》Invoke是一个强大的Python库,用于编写自动化脚本,本文就来介绍一下PythonInvoke自动化任务库的使用,具有一定的参考价值,感兴趣的可以... 目录什么是 Invoke?如何安装 Invoke?Invoke 基础1. 运行测试2. 构建文档3.

解决Cron定时任务中Pytest脚本无法发送邮件的问题

《解决Cron定时任务中Pytest脚本无法发送邮件的问题》文章探讨解决在Cron定时任务中运行Pytest脚本时邮件发送失败的问题,先优化环境变量,再检查Pytest邮件配置,接着配置文件确保SMT... 目录引言1. 环境变量优化:确保Cron任务可以正确执行解决方案:1.1. 创建一个脚本1.2. 修

Java实现任务管理器性能网络监控数据的方法详解

《Java实现任务管理器性能网络监控数据的方法详解》在现代操作系统中,任务管理器是一个非常重要的工具,用于监控和管理计算机的运行状态,包括CPU使用率、内存占用等,对于开发者和系统管理员来说,了解这些... 目录引言一、背景知识二、准备工作1. Maven依赖2. Gradle依赖三、代码实现四、代码详解五