浪尖说spark的coalesce的利弊及原理

2023-10-09 02:32

本文主要是介绍浪尖说spark的coalesce的利弊及原理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

浪尖的粉丝应该很久没见浪尖发过spark源码解读的文章,今天浪尖在这里给大家分享一篇文章,帮助大家进一步理解rdd如何在spark中被计算的,同时解释一下coalesce降低分区的原理及使用问题。

主要是知识星球有人问到过coalesce方法的使用和原理的问题,并且参考阅读了网上关于coalesce方法的错误介绍,有了错误的理解,所以浪尖忙里偷闲给大家解释一下。

浪尖这里建议多看看spark源码上,spark源码我觉得是注释最全的一套源码了,而且整体代码逻辑比较清晰,就是scala高阶函数的使用会使得前期阅读的时候很头疼,但是不可否认spark是大家学习scala编程规范性的参考代码。

这里不得不吐槽一下:flink的代码写的很挫,注释又不好,感觉不太适合人们阅读学习。

1.  coalesce  函数start

对于Spark 算子使用,大家还是要经常翻看一下源码上的注释及理解一下spark 算子的源码实现逻辑,注释很多时候已经很清楚了讲了算子的应用场景及原理,比如本文要讲的关于coalesce函数的注释如下:

 /*** Return a new RDD that is reduced into `numPartitions` partitions.** This results in a narrow dependency, e.g. if you go from 1000 partitions* to 100 partitions, there will not be a shuffle, instead each of the 100* new partitions will claim 10 of the current partitions. If a larger number* of partitions is requested, it will stay at the current number of partitions.** However, if you're doing a drastic coalesce, e.g. to numPartitions = 1,* this may result in your computation taking place on fewer nodes than* you like (e.g. one node in the case of numPartitions = 1). To avoid this,* you can pass shuffle = true. This will add a shuffle step, but means the* current upstream partitions will be executed in parallel (per whatever* the current partitioning is).** @note With shuffle = true, you can actually coalesce to a larger number* of partitions. This is useful if you have a small number of partitions,* say 100, potentially with a few partitions being abnormally large. Calling* coalesce(1000, shuffle = true) will result in 1000 partitions with the* data distributed using a hash partitioner. The optional partition coalescer* passed in must be serializable.*/

注释的大致意思就是假设父rdd 1000分区,然后调用coalesce(100),实际上就是将父rdd的1000分区分成100组,每组10个,叫做partitionGroup,每个partitionGroup作为coalescedrdd的一个分区,在compute方法中迭代处理,以此来避免shuffle。

coalesce函数总共三个参数:分区数,是否进行shuffle(默认不shuffle),Coalesce分区器(用来决定哪些父rdd的分区组成一组,作为一个partitiongroup,也即是决定了coalescedrdd的分区情况)。

def coalesce(numPartitions: Int, shuffle: Boolean = false,partitionCoalescer: Option[PartitionCoalescer] = Option.empty)(implicit ord: Ordering[T] = null): RDD[T] = withScope {require(numPartitions > 0, s"Number of partitions ($numPartitions) must be positive.")if (shuffle) {/** Distributes elements evenly across output partitions, starting from a random partition. */val distributePartition = (index: Int, items: Iterator[T]) => {var position = new Random(hashing.byteswap32(index)).nextInt(numPartitions)items.map { t =>// Note that the hash code of the key will just be the key itself. The HashPartitioner// will mod it with the number of total partitions.position = position + 1(position, t)}} : Iterator[(Int, T)]// include a shuffle step so that our upstream tasks are still distributednew CoalescedRDD(new ShuffledRDD[Int, T, T](mapPartitionsWithIndexInternal(distributePartition, isOrderSensitive = true),new HashPartitioner(numPartitions)),numPartitions,partitionCoalescer).values} else {new CoalescedRDD(this, numPartitions, partitionCoalescer)}}

研究coalescedrdd源码之前,浪尖觉得应该要强调一下rdd的五大特性,大家要不理解rdd的五大特性的话,很难理解本文的内容。

吐槽一下:

其实,大家对于RDD五大特性都能背诵入流,但是要说真正理解,浪尖感觉很多人还是差点。

 *  - A list of partitions*  - A function for computing each split*  - A list of dependencies on other RDDs*  - Optionally, a Partitioner for key-value RDDs (e.g. to say that the RDD is hash-partitioned)*  - Optionally, a list of preferred locations to compute each split on (e.g. block locations for*    an HDFS file)

也即:

每个RDD都有一系列的分区,每个rdd都有一系列的父rdd,也有一个针对rdd的当前分区的compute计算函数,可选的分区器和可选的本地性策略。

那么,提个问题: RDD和父RDD的分区关系是如何确定的?

这里又要强调五大特性了:

所有的RDD的分区数都是由getPartitions函数来确定分区,所有的RDD都是通过getDependencies()函数来确定依赖关系:窄依赖和宽依赖。而所有的rdd都是通过compute方法来计算rdd数据的。

coalesce函数的shuffle的我们这里就暂时不介绍了,只介绍不进行shuffle操作的功能,也即是:

new CoalescedRDD(this, numPartitions, partitionCoalescer)

2. getPartitions 分区分组

默认coalesce函数的partitionCoalescer为空,所以你要想自己实现父RDD分区分组策略也是可以的。对于CoalescedRDD,默认指定分区器为空,那么看一下其getPartitions函数,会使用默认的分区器DefaultPartitionCoalescer。

override def getPartitions: Array[Partition] = {val pc = partitionCoalescer.getOrElse(new DefaultPartitionCoalescer())pc.coalesce(maxPartitions, prev).zipWithIndex.map {case (pg, i) =>val ids = pg.partitions.map(_.index).toArrayCoalescedRDDPartition(i, prev, ids, pg.prefLoc)}}

可以看看DefaultPartitionCoalescer分区器的coalesce方法,实际上就是将父RDD的分区分组缩减为指定的分区数,该函数返回的就是Array[PartitionGroup],每个PartitionGroup代表一组父RDD分区,也代表一个CoalescedRDD的分区。

 /*** Runs the packing algorithm and returns an array of PartitionGroups that if possible are* load balanced and grouped by locality** @return array of partition groups*/def coalesce(maxPartitions: Int, prev: RDD[_]): Array[PartitionGroup] = {val partitionLocs = new PartitionLocations(prev)// setup the groups (bins)setupGroups(math.min(prev.partitions.length, maxPartitions), partitionLocs)// assign partitions (balls) to each group (bins)throwBalls(maxPartitions, prev, balanceSlack, partitionLocs)getPartitions}

一个PartitionGroup实际上就是按照一定的规则组合的父RDD的partition数组,可以看一下该类。

/*** ::DeveloperApi::* A group of `Partition`s* @param prefLoc preferred location for the partition group*/
@DeveloperApi
class PartitionGroup(val prefLoc: Option[String] = None) {val partitions = mutable.ArrayBuffer[Partition]()def numPartitions: Int = partitions.size
}

3. getDependencies 血缘

上面说了,CoalescedRDD的getPartitions()方法,也就是完成了父RDD的分区到当前RDD分区的映射关系。这个映射关系的使用实际上就是通过getDependencies方法来调用的。具体如下:

 override def getDependencies: Seq[Dependency[_]] = {Seq(new NarrowDependency(prev) {def getParents(id: Int): Seq[Int] =partitions(id).asInstanceOf[CoalescedRDDPartition].parentsIndices})}

partitions数组是在RDD类里实现的,其实调用了getPartitions函数。

/*** Get the array of partitions of this RDD, taking into account whether the* RDD is checkpointed or not.*/final def partitions: Array[Partition] = {checkpointRDD.map(_.partitions).getOrElse {if (partitions_ == null) {partitions_ = getPartitionspartitions_.zipWithIndex.foreach { case (partition, index) =>require(partition.index == index,s"partitions($index).partition == ${partition.index}, but it should equal $index")}}partitions_}}

再说回窄依赖 NarrowDependency,其实他的getParents方法就是通过当前分区的id获取一个coalescedRDDPartition,也即一个父RDD分区数组。该数组是通过CoalescedRDD的getPartitions中实现的对父RDD分区分组得到的。

4. compute 计算分区

compute五大特性之一,针对分区的计算函数,对于CoalescedRDD,那么其计算函数的实现如下:

 override def compute(partition: Partition, context: TaskContext): Iterator[T] = {partition.asInstanceOf[CoalescedRDDPartition].parents.iterator.flatMap { parentPartition =>firstParent[T].iterator(parentPartition, context)}}

观察上述方法就会发现,是针对CoalescedRDDPartition的计算,这个其实是就是针对一个PartitionsGroup进行计算,也即使一个父RDD的分组。在getPartitions方法里生成的哦。

到这里就很明显了,coalescedrdd的compute方法虽然是针对Coalescedrdd的一个分区计算,实际上是计算的父RDD的一组RDD分区,降低了父RDD 的并行度哦,所以大家使用要慎重哦。

该使用shuffle决不能手软

5. shuffle模式 开篇

对于支持shuffle的Coalesce函数,我们可以看到其实是外层包括了一个shuffleRDD,同时CoalescedRDD传入的分区数和构建的父shuffleRDD一样,就实现了一对一分区转化,以此来实现shuffle功能的,针对shuffleRDD我们星球里分析分享。

if (shuffle) {/** Distributes elements evenly across output partitions, starting from a random partition. */val distributePartition = (index: Int, items: Iterator[T]) => {var position = new Random(hashing.byteswap32(index)).nextInt(numPartitions)items.map { t =>// Note that the hash code of the key will just be the key itself. The HashPartitioner// will mod it with the number of total partitions.position = position + 1(position, t)}} : Iterator[(Int, T)]// include a shuffle step so that our upstream tasks are still distributednew CoalescedRDD(new ShuffledRDD[Int, T, T](mapPartitionsWithIndexInternal(distributePartition, isOrderSensitive = true),new HashPartitioner(numPartitions)),numPartitions,partitionCoalescer).values

欢迎大家加入浪尖知识星球哦~

这篇关于浪尖说spark的coalesce的利弊及原理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/169721

相关文章

MySQL中的MVCC底层原理解读

《MySQL中的MVCC底层原理解读》本文详细介绍了MySQL中的多版本并发控制(MVCC)机制,包括版本链、ReadView以及在不同事务隔离级别下MVCC的工作原理,通过一个具体的示例演示了在可重... 目录简介ReadView版本链演示过程总结简介MVCC(Multi-Version Concurr

Redis主从/哨兵机制原理分析

《Redis主从/哨兵机制原理分析》本文介绍了Redis的主从复制和哨兵机制,主从复制实现了数据的热备份和负载均衡,而哨兵机制可以监控Redis集群,实现自动故障转移,哨兵机制通过监控、下线、选举和故... 目录一、主从复制1.1 什么是主从复制1.2 主从复制的作用1.3 主从复制原理1.3.1 全量复制

Redis主从复制的原理分析

《Redis主从复制的原理分析》Redis主从复制通过将数据镜像到多个从节点,实现高可用性和扩展性,主从复制包括初次全量同步和增量同步两个阶段,为优化复制性能,可以采用AOF持久化、调整复制超时时间、... 目录Redis主从复制的原理主从复制概述配置主从复制数据同步过程复制一致性与延迟故障转移机制监控与维

SpringCloud配置动态更新原理解析

《SpringCloud配置动态更新原理解析》在微服务架构的浩瀚星海中,服务配置的动态更新如同魔法一般,能够让应用在不重启的情况下,实时响应配置的变更,SpringCloud作为微服务架构中的佼佼者,... 目录一、SpringBoot、Cloud配置的读取二、SpringCloud配置动态刷新三、更新@R

SpringBoot操作spark处理hdfs文件的操作方法

《SpringBoot操作spark处理hdfs文件的操作方法》本文介绍了如何使用SpringBoot操作Spark处理HDFS文件,包括导入依赖、配置Spark信息、编写Controller和Ser... 目录SpringBoot操作spark处理hdfs文件1、导入依赖2、配置spark信息3、cont

Redis主从复制实现原理分析

《Redis主从复制实现原理分析》Redis主从复制通过Sync和CommandPropagate阶段实现数据同步,2.8版本后引入Psync指令,根据复制偏移量进行全量或部分同步,优化了数据传输效率... 目录Redis主DodMIK从复制实现原理实现原理Psync: 2.8版本后总结Redis主从复制实

深入探索协同过滤:从原理到推荐模块案例

文章目录 前言一、协同过滤1. 基于用户的协同过滤(UserCF)2. 基于物品的协同过滤(ItemCF)3. 相似度计算方法 二、相似度计算方法1. 欧氏距离2. 皮尔逊相关系数3. 杰卡德相似系数4. 余弦相似度 三、推荐模块案例1.基于文章的协同过滤推荐功能2.基于用户的协同过滤推荐功能 前言     在信息过载的时代,推荐系统成为连接用户与内容的桥梁。本文聚焦于

hdu4407(容斥原理)

题意:给一串数字1,2,......n,两个操作:1、修改第k个数字,2、查询区间[l,r]中与n互质的数之和。 解题思路:咱一看,像线段树,但是如果用线段树做,那么每个区间一定要记录所有的素因子,这样会超内存。然后我就做不来了。后来看了题解,原来是用容斥原理来做的。还记得这道题目吗?求区间[1,r]中与p互质的数的个数,如果不会的话就先去做那题吧。现在这题是求区间[l,r]中与n互质的数的和

hdu4407容斥原理

题意: 有一个元素为 1~n 的数列{An},有2种操作(1000次): 1、求某段区间 [a,b] 中与 p 互质的数的和。 2、将数列中某个位置元素的值改变。 import java.io.BufferedInputStream;import java.io.BufferedReader;import java.io.IOException;import java.io.Inpu

hdu4059容斥原理

求1-n中与n互质的数的4次方之和 import java.io.BufferedInputStream;import java.io.BufferedReader;import java.io.IOException;import java.io.InputStream;import java.io.InputStreamReader;import java.io.PrintWrit