基于图片相似度对视频进行抽帧

2023-10-08 04:44

本文主要是介绍基于图片相似度对视频进行抽帧,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 需求
  • 方法
  • 代码

需求

做深度学习需要自己收集图片,其中一种是收集视频,然后将视频转换成图片。在视频转图片过程中,会存在大量的高度相似帧,对于模型训练无用,而且增加标注成本,如何选取有足够差异的图片是我们需要的。

方法

基于图片相似度来选取不同的图片进行保存,相似度计算方法主要参考https://aistudio.baidu.com/projectdetail/4185629?channelType=0&channel=0 这篇中的方法。

代码

直接上代码,内容简单,很容易看明白。代码中提供基于hash的三种方法和一种结构相似性方法,需要手动改代码来切换方法及相关阈值。

import os
import cv2
import numpy as np
import sys
import shutil
from datetime import datetime
from skimage.metrics import structural_similarity as compare_ssim# 均值哈希算法
def ahash(image):# 将图片缩放为8*8的image = cv2.resize(image, (8, 8), interpolation=cv2.INTER_CUBIC)# 将图片转化为灰度图gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)# s为像素和初始灰度值,hash_str为哈希值初始值s = 0# 遍历像素累加和for i in range(8):for j in range(8):s = s + gray[i, j]# 计算像素平均值avg = s / 64# 灰度大于平均值为1相反为0,得到图片的平均哈希值,此时得到的hash值为64位的01字符串ahash_str = ''for i in range(8):for j in range(8):if gray[i, j] > avg:ahash_str = ahash_str + '1'else:ahash_str = ahash_str + '0'result = ''for i in range(0, 64, 4):result += ''.join('%x' % int(ahash_str[i: i + 4], 2))# print("ahash值:",result)return result
# phash
def phash(img):# 加载并调整图片为32*32的灰度图片img1 = cv2.resize(img, (32, 32),cv2.COLOR_RGB2GRAY)# 创建二维列表h, w = img.shape[:2]vis0 = np.zeros((h, w), np.float32)vis0[:h, :w] = img1
​# DCT二维变换# 离散余弦变换,得到dct系数矩阵img_dct = cv2.dct(cv2.dct(vis0))img_dct.resize(8,8)# 把list变成一维listimg_list = np.array().flatten(img_dct.tolist())# 计算均值img_mean = cv2.mean(img_list)avg_list = ['0' if i<img_mean else '1' for i in img_list]return ''.join(['%x' % int(''.join(avg_list[x:x+4]),2) for x in range(0,64,4)])
#差异值哈希算法
def dhash(image):#将图片resize 到8x8image = cv2.resize(image,(9,8),interpolation=cv2.INTER_CUBIC)#转成灰度图gray = cv2.cvtColor(image,cv2.COLOR_RGB2GRAY)#计算dhash 二进制dhash_str =""for i in range(8):for j in range(8):if gray[i,j]>gray[i,j+1]:dhash_str = dhash_str+"1"else:dhash_str = dhash_str+"0"#二进制转十六近制result = ""for i in range(0,64,4):result += "".join("%x" %int(dhash_str[i:i+4],2))return result
# 计算两个哈希值之间的差异
def campHash(hash1, hash2):n = 0# hash长度不同返回-1,此时不能比较if len(hash1) != len(hash2):return -1# 如果hash长度相同遍历长度for i in range(len(hash1)):if hash1[i] != hash2[i]:n = n + 1return n
def extract_frames(video_path, similarity_threshold, output_dir):# 读取视频文件cap = cv2.VideoCapture(video_path)# 创建输出文件夹if os.path.exists(output_dir):shutil.rmtree(output_dir)os.makedirs(output_dir)#要保存的图片previous_image=Noneframe_count=0# 遍历视频帧while True:# 读取一帧ret, frame = cap.read()# 如果读取到最后一帧,退出循环if not ret:break# 将帧转换为图像image = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)if previous_image is None:previous_image=cv2.resize(image,(128,128))# 获取当前时间  now = datetime.now()            # 格式化成指定的时间格式  formatted_time = now.strftime("%Y_%m_%d-%H_%M_%S")# 保存帧cv2.imwrite(os.path.join(output_dir,f"{formatted_time}_{frame_count}.jpg"),frame)continueelse:# 计算图像之间的相似度current_image = cv2.resize(image,(128,128))#ssim#similarity = compare_ssim(current_image, previous_image,channel_axis=2)#差异hashhash1 = ahash(previous_image)hash2 = ahash(current_image)similarity = campHash(hash1,hash2)# ssim如果相似度小于阈值,则不够相似,则抽取帧#if similarity < similarity_threshold:# dhash如果相似度大于阈值,则不够相似,则抽取帧if similarity > similarity_threshold:# 获取当前时间  now = datetime.now()            # 格式化成指定的时间格式  formatted_time = now.strftime("%Y_%m_%d-%H_%M_%S")# 保存帧cv2.imwrite(os.path.join(output_dir,f"{formatted_time}_{frame_count}.jpg"),frame)# 更新上一帧previous_image = current_imageframe_count += 1print(".",end="")sys.stdout.flush()cap.release()if __name__ == "__main__":# 视频路径video_path = "../jiabo/20230829/跳远30fps_20230829194849_CH01.avi"# ssim相似度阈值#similarity_threshold = 0.9# dhash 相似度阈值similarity_threshold = 10# 输出文件夹output_dir = "split_output_ahash"# 抽取帧extract_frames(video_path, similarity_threshold, output_dir)

这篇关于基于图片相似度对视频进行抽帧的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/162770

相关文章

SpringBoot结合Docker进行容器化处理指南

《SpringBoot结合Docker进行容器化处理指南》在当今快速发展的软件工程领域,SpringBoot和Docker已经成为现代Java开发者的必备工具,本文将深入讲解如何将一个SpringBo... 目录前言一、为什么选择 Spring Bootjavascript + docker1. 快速部署与

linux解压缩 xxx.jar文件进行内部操作过程

《linux解压缩xxx.jar文件进行内部操作过程》:本文主要介绍linux解压缩xxx.jar文件进行内部操作,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、解压文件二、压缩文件总结一、解压文件1、把 xxx.jar 文件放在服务器上,并进入当前目录#

SpringBoot中如何使用Assert进行断言校验

《SpringBoot中如何使用Assert进行断言校验》Java提供了内置的assert机制,而Spring框架也提供了更强大的Assert工具类来帮助开发者进行参数校验和状态检查,下... 目录前言一、Java 原生assert简介1.1 使用方式1.2 示例代码1.3 优缺点分析二、Spring Fr

基于Python实现一个图片拆分工具

《基于Python实现一个图片拆分工具》这篇文章主要为大家详细介绍了如何基于Python实现一个图片拆分工具,可以根据需要的行数和列数进行拆分,感兴趣的小伙伴可以跟随小编一起学习一下... 简单介绍先自己选择输入的图片,默认是输出到项目文件夹中,可以自己选择其他的文件夹,选择需要拆分的行数和列数,可以通过

Python使用OpenCV实现获取视频时长的小工具

《Python使用OpenCV实现获取视频时长的小工具》在处理视频数据时,获取视频的时长是一项常见且基础的需求,本文将详细介绍如何使用Python和OpenCV获取视频时长,并对每一行代码进行深入解析... 目录一、代码实现二、代码解析1. 导入 OpenCV 库2. 定义获取视频时长的函数3. 打开视频文

Golang如何对cron进行二次封装实现指定时间执行定时任务

《Golang如何对cron进行二次封装实现指定时间执行定时任务》:本文主要介绍Golang如何对cron进行二次封装实现指定时间执行定时任务问题,具有很好的参考价值,希望对大家有所帮助,如有错误... 目录背景cron库下载代码示例【1】结构体定义【2】定时任务开启【3】使用示例【4】控制台输出总结背景

利用Python脚本实现批量将图片转换为WebP格式

《利用Python脚本实现批量将图片转换为WebP格式》Python语言的简洁语法和库支持使其成为图像处理的理想选择,本文将介绍如何利用Python实现批量将图片转换为WebP格式的脚本,WebP作为... 目录简介1. python在图像处理中的应用2. WebP格式的原理和优势2.1 WebP格式与传统

使用Python进行GRPC和Dubbo协议的高级测试

《使用Python进行GRPC和Dubbo协议的高级测试》GRPC(GoogleRemoteProcedureCall)是一种高性能、开源的远程过程调用(RPC)框架,Dubbo是一种高性能的分布式服... 目录01 GRPC测试安装gRPC编写.proto文件实现服务02 Dubbo测试1. 安装Dubb

基于 HTML5 Canvas 实现图片旋转与下载功能(完整代码展示)

《基于HTML5Canvas实现图片旋转与下载功能(完整代码展示)》本文将深入剖析一段基于HTML5Canvas的代码,该代码实现了图片的旋转(90度和180度)以及旋转后图片的下载... 目录一、引言二、html 结构分析三、css 样式分析四、JavaScript 功能实现一、引言在 Web 开发中,

Python如何去除图片干扰代码示例

《Python如何去除图片干扰代码示例》图片降噪是一个广泛应用于图像处理的技术,可以提高图像质量和相关应用的效果,:本文主要介绍Python如何去除图片干扰的相关资料,文中通过代码介绍的非常详细,... 目录一、噪声去除1. 高斯噪声(像素值正态分布扰动)2. 椒盐噪声(随机黑白像素点)3. 复杂噪声(如伪