基于图片相似度对视频进行抽帧

2023-10-08 04:44

本文主要是介绍基于图片相似度对视频进行抽帧,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 需求
  • 方法
  • 代码

需求

做深度学习需要自己收集图片,其中一种是收集视频,然后将视频转换成图片。在视频转图片过程中,会存在大量的高度相似帧,对于模型训练无用,而且增加标注成本,如何选取有足够差异的图片是我们需要的。

方法

基于图片相似度来选取不同的图片进行保存,相似度计算方法主要参考https://aistudio.baidu.com/projectdetail/4185629?channelType=0&channel=0 这篇中的方法。

代码

直接上代码,内容简单,很容易看明白。代码中提供基于hash的三种方法和一种结构相似性方法,需要手动改代码来切换方法及相关阈值。

import os
import cv2
import numpy as np
import sys
import shutil
from datetime import datetime
from skimage.metrics import structural_similarity as compare_ssim# 均值哈希算法
def ahash(image):# 将图片缩放为8*8的image = cv2.resize(image, (8, 8), interpolation=cv2.INTER_CUBIC)# 将图片转化为灰度图gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)# s为像素和初始灰度值,hash_str为哈希值初始值s = 0# 遍历像素累加和for i in range(8):for j in range(8):s = s + gray[i, j]# 计算像素平均值avg = s / 64# 灰度大于平均值为1相反为0,得到图片的平均哈希值,此时得到的hash值为64位的01字符串ahash_str = ''for i in range(8):for j in range(8):if gray[i, j] > avg:ahash_str = ahash_str + '1'else:ahash_str = ahash_str + '0'result = ''for i in range(0, 64, 4):result += ''.join('%x' % int(ahash_str[i: i + 4], 2))# print("ahash值:",result)return result
# phash
def phash(img):# 加载并调整图片为32*32的灰度图片img1 = cv2.resize(img, (32, 32),cv2.COLOR_RGB2GRAY)# 创建二维列表h, w = img.shape[:2]vis0 = np.zeros((h, w), np.float32)vis0[:h, :w] = img1
​# DCT二维变换# 离散余弦变换,得到dct系数矩阵img_dct = cv2.dct(cv2.dct(vis0))img_dct.resize(8,8)# 把list变成一维listimg_list = np.array().flatten(img_dct.tolist())# 计算均值img_mean = cv2.mean(img_list)avg_list = ['0' if i<img_mean else '1' for i in img_list]return ''.join(['%x' % int(''.join(avg_list[x:x+4]),2) for x in range(0,64,4)])
#差异值哈希算法
def dhash(image):#将图片resize 到8x8image = cv2.resize(image,(9,8),interpolation=cv2.INTER_CUBIC)#转成灰度图gray = cv2.cvtColor(image,cv2.COLOR_RGB2GRAY)#计算dhash 二进制dhash_str =""for i in range(8):for j in range(8):if gray[i,j]>gray[i,j+1]:dhash_str = dhash_str+"1"else:dhash_str = dhash_str+"0"#二进制转十六近制result = ""for i in range(0,64,4):result += "".join("%x" %int(dhash_str[i:i+4],2))return result
# 计算两个哈希值之间的差异
def campHash(hash1, hash2):n = 0# hash长度不同返回-1,此时不能比较if len(hash1) != len(hash2):return -1# 如果hash长度相同遍历长度for i in range(len(hash1)):if hash1[i] != hash2[i]:n = n + 1return n
def extract_frames(video_path, similarity_threshold, output_dir):# 读取视频文件cap = cv2.VideoCapture(video_path)# 创建输出文件夹if os.path.exists(output_dir):shutil.rmtree(output_dir)os.makedirs(output_dir)#要保存的图片previous_image=Noneframe_count=0# 遍历视频帧while True:# 读取一帧ret, frame = cap.read()# 如果读取到最后一帧,退出循环if not ret:break# 将帧转换为图像image = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)if previous_image is None:previous_image=cv2.resize(image,(128,128))# 获取当前时间  now = datetime.now()            # 格式化成指定的时间格式  formatted_time = now.strftime("%Y_%m_%d-%H_%M_%S")# 保存帧cv2.imwrite(os.path.join(output_dir,f"{formatted_time}_{frame_count}.jpg"),frame)continueelse:# 计算图像之间的相似度current_image = cv2.resize(image,(128,128))#ssim#similarity = compare_ssim(current_image, previous_image,channel_axis=2)#差异hashhash1 = ahash(previous_image)hash2 = ahash(current_image)similarity = campHash(hash1,hash2)# ssim如果相似度小于阈值,则不够相似,则抽取帧#if similarity < similarity_threshold:# dhash如果相似度大于阈值,则不够相似,则抽取帧if similarity > similarity_threshold:# 获取当前时间  now = datetime.now()            # 格式化成指定的时间格式  formatted_time = now.strftime("%Y_%m_%d-%H_%M_%S")# 保存帧cv2.imwrite(os.path.join(output_dir,f"{formatted_time}_{frame_count}.jpg"),frame)# 更新上一帧previous_image = current_imageframe_count += 1print(".",end="")sys.stdout.flush()cap.release()if __name__ == "__main__":# 视频路径video_path = "../jiabo/20230829/跳远30fps_20230829194849_CH01.avi"# ssim相似度阈值#similarity_threshold = 0.9# dhash 相似度阈值similarity_threshold = 10# 输出文件夹output_dir = "split_output_ahash"# 抽取帧extract_frames(video_path, similarity_threshold, output_dir)

这篇关于基于图片相似度对视频进行抽帧的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/162770

相关文章

使用MongoDB进行数据存储的操作流程

《使用MongoDB进行数据存储的操作流程》在现代应用开发中,数据存储是一个至关重要的部分,随着数据量的增大和复杂性的增加,传统的关系型数据库有时难以应对高并发和大数据量的处理需求,MongoDB作为... 目录什么是MongoDB?MongoDB的优势使用MongoDB进行数据存储1. 安装MongoDB

Linux使用fdisk进行磁盘的相关操作

《Linux使用fdisk进行磁盘的相关操作》fdisk命令是Linux中用于管理磁盘分区的强大文本实用程序,这篇文章主要为大家详细介绍了如何使用fdisk进行磁盘的相关操作,需要的可以了解下... 目录简介基本语法示例用法列出所有分区查看指定磁盘的区分管理指定的磁盘进入交互式模式创建一个新的分区删除一个存

C#使用HttpClient进行Post请求出现超时问题的解决及优化

《C#使用HttpClient进行Post请求出现超时问题的解决及优化》最近我的控制台程序发现有时候总是出现请求超时等问题,通常好几分钟最多只有3-4个请求,在使用apipost发现并发10个5分钟也... 目录优化结论单例HttpClient连接池耗尽和并发并发异步最终优化后优化结论我直接上优化结论吧,

使用Python进行文件读写操作的基本方法

《使用Python进行文件读写操作的基本方法》今天的内容来介绍Python中进行文件读写操作的方法,这在学习Python时是必不可少的技术点,希望可以帮助到正在学习python的小伙伴,以下是Pyth... 目录一、文件读取:二、文件写入:三、文件追加:四、文件读写的二进制模式:五、使用 json 模块读写

C#中图片如何自适应pictureBox大小

《C#中图片如何自适应pictureBox大小》文章描述了如何在C#中实现图片自适应pictureBox大小,并展示修改前后的效果,修改步骤包括两步,作者分享了个人经验,希望对大家有所帮助... 目录C#图片自适应pictureBox大小编程修改步骤总结C#图片自适应pictureBox大小上图中“z轴

使用zabbix进行监控网络设备流量

《使用zabbix进行监控网络设备流量》这篇文章主要为大家详细介绍了如何使用zabbix进行监控网络设备流量,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录安装zabbix配置ENSP环境配置zabbix实行监控交换机测试一台liunx服务器,这里使用的为Ubuntu22.04(

使用Python将长图片分割为若干张小图片

《使用Python将长图片分割为若干张小图片》这篇文章主要为大家详细介绍了如何使用Python将长图片分割为若干张小图片,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. python需求的任务2. Python代码的实现3. 代码修改的位置4. 运行结果1. Python需求

Python视频处理库VidGear使用小结

《Python视频处理库VidGear使用小结》VidGear是一个高性能的Python视频处理库,本文主要介绍了Python视频处理库VidGear使用小结,文中通过示例代码介绍的非常详细,对大家的... 目录一、VidGear的安装二、VidGear的主要功能三、VidGear的使用示例四、VidGea

在Pandas中进行数据重命名的方法示例

《在Pandas中进行数据重命名的方法示例》Pandas作为Python中最流行的数据处理库,提供了强大的数据操作功能,其中数据重命名是常见且基础的操作之一,本文将通过简洁明了的讲解和丰富的代码示例,... 目录一、引言二、Pandas rename方法简介三、列名重命名3.1 使用字典进行列名重命名3.编

python安装完成后可以进行的后续步骤和注意事项小结

《python安装完成后可以进行的后续步骤和注意事项小结》本文详细介绍了安装Python3后的后续步骤,包括验证安装、配置环境、安装包、创建和运行脚本,以及使用虚拟环境,还强调了注意事项,如系统更新、... 目录验证安装配置环境(可选)安装python包创建和运行Python脚本虚拟环境(可选)注意事项安装