C语言之pthread_cond_t信号变化探究总结(八十)

2023-10-07 23:10

本文主要是介绍C语言之pthread_cond_t信号变化探究总结(八十),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

简介: CSDN博客专家,专注Android/Linux系统,分享多mic语音方案、音视频、编解码等技术,与大家一起成长!

优质专栏:Audio工程师进阶系列原创干货持续更新中……】🚀

人生格言: 人生从来没有捷径,只有行动才是治疗恐惧和懒惰的唯一良药.

更多原创,欢迎关注:Android系统攻城狮

欢迎关注Android系统攻城狮

1.前言

本篇目的: 理解pthread_cond_wait与pthread_cond_timedwait用法区别

函数区别
pthread_cond_wait与pthread_cond_signal函数成对出现,如果没有pthread_cond_signal给它发信号,它死等,等到天荒地老…
pthread_cond_timedwait自己设置超时时间,一旦超过设定时间,自动执行pthread_cond_timedwait函数后边的代码。如果pthread_cond_signal在pthread_cond_timedwait 设置超时时间之前给它发信号,它会收到信号,提前结束等待。
pthread_cond_signal一次只能唤醒一个等待中的线程
pthread_cond_broadcast可以唤醒全部等待中的线程
pthread_mutex_t Linux中用于互斥锁的结构体类型。互斥锁用于保护临界区,确保同时只有一个线程可以访问共享资源。
pthread_cond_t在Linux中,pthread_cond_t是用于线程间同步的条件变量。条件变量用于在线程之间传递信号,帮助线程进行等待和唤醒操作。条件变量通常与互斥锁(pthread_mutex_t)一起使用。当某个线程需要等待某个条件满足时,它会调用pthread_cond_wait函数将自己阻塞,并释放占有的互斥锁。当另一个线程满足了条件并调用了pthread_cond_signal或pthread_cond_broadcast函数发送信号时,等待的线程会被唤醒并重新获取互斥锁,从而继续执行。

2.代码示例

v1.0 pthread_cond_signal和pthread_cond_wait用法

#include <iostream>
#include <thread>
#include <unistd.h>
#include <pthread.h>using namespace std;pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;
pthread_cond_t cond = PTHREAD_COND_INITIALIZER;int main() {std::thread thread = std::thread([&]() {cout << "线程等待信号到来..." << endl;pthread_mutex_lock(&mutex);//1.如果不调用pthread_cond_signal(&cond)函数发信号,永远死等.pthread_cond_wait(&cond, &mutex);cout << "Thread timed wait for 10s." << endl;pthread_mutex_unlock(&mutex);});//1.给pthread_cond_wait和pthread_cond_timedwait发信号(它俩是成对出现的),使其后边的代码可以执行.sleep(1);pthread_cond_signal(&cond);//仅可以唤醒一个线程sleep(2);printf("%s() [%d], cond.__data = %d\n",__FUNCTION__,__LINE__,*((int*)(&(cond.__data))));thread.join();return 0;
}

v2.0 pthread_cond_signal和pthread_cond_timedwait用法

#include <iostream>
#include <thread>
#include <unistd.h>
#include <pthread.h>
#include <sys/time.h>
using namespace std;pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;
pthread_cond_t cond = PTHREAD_COND_INITIALIZER;int main() {//1.给pthread_cond_wait和pthread_cond_timedwait发信号(它俩是成对出现的),使其后边的代码可以执行.std::thread thread = std::thread([&]() {cout << "线程等待信号到来..." << endl;struct timeval now;struct timespec outtime;gettimeofday(&now, NULL);outtime.tv_sec = now.tv_sec + 10;//如果没有等到信号,则超过10s后自动处理.outtime.tv_nsec = now.tv_usec * 1000;pthread_mutex_lock(&mutex);printf("%s() [%d], cond.__data = %d\n",__FUNCTION__,__LINE__,*((int*)(&(cond.__data))));//2.可以设置超时时间,一旦超过设定时间,自动执行pthread_cond_timedwait函数后边的代码,它不受pthread_cond_signal的影响.pthread_cond_timedwait(&cond, &mutex, &outtime);printf("%s() [%d], cond.__data = %d\n",__FUNCTION__,__LINE__,*((int*)(&(cond.__data))));cout << "Thread timed wait for 10s." << endl;pthread_mutex_unlock(&mutex);});sleep(1);pthread_cond_signal(&cond);//仅可以唤醒一个线程sleep(2);thread.join();return 0;
}

v3.0 pthread_cond_broadcast和pthread_cond_wait用法

#include <iostream>
#include <thread>
#include <unistd.h>
#include <pthread.h>using namespace std;pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;
pthread_cond_t cond = PTHREAD_COND_INITIALIZER;int main() {std::thread thread = std::thread([&]() {cout << "线程等待信号到来..." << endl;pthread_mutex_lock(&mutex);//1.如果不调用pthread_cond_signal(&cond)函数发信号,永远死等.pthread_cond_wait(&cond, &mutex);cout << "Thread timed wait for 10s." << endl;pthread_mutex_unlock(&mutex);});//1.给pthread_cond_wait和pthread_cond_timedwait发信号(它俩是成对出现的),使其后边的代码可以执行.sleep(1);pthread_cond_broadcast(&cond);//可以唤醒全部线程sleep(2);printf("%s() [%d], cond.__data = %d\n",__FUNCTION__,__LINE__,*((int*)(&(cond.__data))));thread.join();return 0;
}

v4.0 pthread_cond_broadcast和pthread_cond_timedwait用法

#include <iostream>
#include <thread>
#include <unistd.h>
#include <pthread.h>
#include <sys/time.h>
using namespace std;pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;
pthread_cond_t cond = PTHREAD_COND_INITIALIZER;int main() {//1.给pthread_cond_wait和pthread_cond_timedwait发信号(它俩是成对出现的),使其后边的代码可以执行.std::thread thread = std::thread([&]() {cout << "线程等待信号到来..." << endl;struct timeval now;struct timespec outtime;gettimeofday(&now, NULL);outtime.tv_sec = now.tv_sec + 10;//如果没有等到信号,则超过10s后自动处理.outtime.tv_nsec = now.tv_usec * 1000;pthread_mutex_lock(&mutex);printf("%s() [%d], cond.__data = %d\n",__FUNCTION__,__LINE__,*((int*)(&(cond.__data))));//2.可以设置超时时间,一旦超过设定时间,自动执行pthread_cond_timedwait函数后边的代码,它不受pthread_cond_signal的影响.pthread_cond_timedwait(&cond, &mutex, &outtime);printf("%s() [%d], cond.__data = %d\n",__FUNCTION__,__LINE__,*((int*)(&(cond.__data))));cout << "Thread timed wait for 10s." << endl;pthread_mutex_unlock(&mutex);});sleep(1);pthread_cond_broadcast(&cond);//可以唤醒全部线程sleep(2);thread.join();return 0;
}

v5.0 pthread_cond_wait: 观察pthread_cond_t和pthread_mutex_t结构体中变量:__data、__size、__align变化

pthread_cond_signal和pthread_cond_wait用法

#include <iostream>
#include <thread>
#include <unistd.h>
#include <pthread.h>using namespace std;pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;
pthread_cond_t cond = PTHREAD_COND_INITIALIZER;int main() {std::thread thread = std::thread([&]() {cout << "线程等待信号到来..." << endl;printf("%s() [%d], cond.__data = %d\n",__FUNCTION__,__LINE__,*((int*)(&(cond.__data))));pthread_mutex_lock(&mutex);//1.如果不调用pthread_cond_signal(&cond)函数发信号,永远死等.pthread_cond_wait(&cond, &mutex);printf("%s() [%d], cond.__data = %d\n",__FUNCTION__,__LINE__,*((int*)(&(cond.__data))));cout << "Thread timed wait for 10s." << endl;pthread_mutex_unlock(&mutex);});//1.给pthread_cond_wait和pthread_cond_timedwait发信号(它俩是成对出现的),使其后边的代码可以执行.sleep(1);printf("%s() [%d], cond.__data = %d\n",__FUNCTION__,__LINE__,*((int*)(&(cond.__data))));printf("%s() [%d], cond.__data = %d\n",__FUNCTION__,__LINE__,*(reinterpret_cast<int*>(&(cond.__data))));printf("%s() [%d], cond.__size = %d\n",__FUNCTION__,__LINE__,*((int*)(&(cond.__size))));printf("%s() [%d], cond.__align = %d\n",__FUNCTION__,__LINE__,*((int*)(&(cond.__align))));printf("%s() [%d], mutex.__data = %d\n",__FUNCTION__,__LINE__,*((int*)(&(mutex.__data))));printf("%s() [%d], mutex.__size = %d\n",__FUNCTION__,__LINE__,*((int*)(&(mutex.__size))));printf("%s() [%d], mutex.__align = %d\n",__FUNCTION__,__LINE__,*((int*)(&(mutex.__align))));//pthread_cond_signal(&cond);//仅可以唤醒一个线程pthread_cond_broadcast(&cond);//可以唤醒全部线程printf("%s() [%d], cond.__data = %d\n",__FUNCTION__,__LINE__,*((int*)(&(cond.__data))));printf("%s() [%d], cond.__size = %d\n",__FUNCTION__,__LINE__,*((int*)(&(cond.__size))));printf("%s() [%d], cond.__align = %d\n",__FUNCTION__,__LINE__,*((int*)(&(cond.__align))));printf("%s() [%d], mutex.__data = %d\n",__FUNCTION__,__LINE__,*((int*)(&(mutex.__data))));printf("%s() [%d], mutex.__size = %d\n",__FUNCTION__,__LINE__,*((int*)(&(mutex.__size))));printf("%s() [%d], mutex.__align = %d\n",__FUNCTION__,__LINE__,*((int*)(&(mutex.__align))));sleep(2);printf("%s() [%d], cond.__data = %d\n",__FUNCTION__,__LINE__,*((int*)(&(cond.__data))));thread.join();return 0;
}

打印:

线程等待信号到来...
operator()() [16], cond.__data = 0
main() [27], cond.__data = 2
main() [28], cond.__data = 2
main() [30], cond.__size = 2
main() [31], cond.__align = 2
main() [33], mutex.__data = 0
main() [34], mutex.__size = 0
main() [35], mutex.__align = 0
main() [40], cond.__data = 3
main() [41], cond.__size = 3
main() [42], cond.__align = 3
main() [44], mutex.__data = 0
main() [45], mutex.__size = 0
main() [46], mutex.__align = 0
operator()() [20], cond.__data = 3
Thread timed wait for 10s.
main() [49], cond.__data = 3

总结:
在进入线程后,信号没来到之前 cond.__data=0;
当进入main进程时,cond.__data=2;
当pthread_cond_signal(&cond)发送信号后,cond.__data=3,然后线程中的pthread_cond_wait(&cond, &mutex)收到cond.__data=3的信号,
立即释放互斥锁,解除阻塞,程序向下运行,到main函数结束。

v6.0 观察pthread_cond_timedwait:pthread_cond_t和pthread_mutex_t结构体中变量:__data、__size、__align变化

pthread_cond_signal和pthread_cond_timedwait用法

#include <iostream>
#include <thread>
#include <unistd.h>
#include <pthread.h>
#include <sys/time.h>
using namespace std;pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;
pthread_cond_t cond = PTHREAD_COND_INITIALIZER;int main() {//1.给pthread_cond_wait和pthread_cond_timedwait发信号(它俩是成对出现的),使其后边的代码可以执行.std::thread thread = std::thread([&]() {cout << "线程等待信号到来..." << endl;struct timeval now;struct timespec outtime;gettimeofday(&now, NULL);outtime.tv_sec = now.tv_sec + 10;//如果没有等到信号,则超过10s后自动处理.outtime.tv_nsec = now.tv_usec * 1000;pthread_mutex_lock(&mutex);printf("%s() [%d], cond.__data = %d\n",__FUNCTION__,__LINE__,*((int*)(&(cond.__data))));//2.可以设置超时时间,一旦超过设定时间,自动执行pthread_cond_timedwait函数后边的代码,它不受pthread_cond_signal的影响.pthread_cond_timedwait(&cond, &mutex, &outtime);printf("%s() [%d], cond.__data = %d\n",__FUNCTION__,__LINE__,*((int*)(&(cond.__data))));cout << "Thread timed wait for 10s." << endl;pthread_mutex_unlock(&mutex);});sleep(1);printf("%s() [%d], cond.__data = %d\n",__FUNCTION__,__LINE__,*((int*)(&(cond.__data))));printf("%s() [%d], cond.__data = %d\n",__FUNCTION__,__LINE__,*(reinterpret_cast<int*>(&(cond.__data))));printf("%s() [%d], cond.__size = %d\n",__FUNCTION__,__LINE__,*((int*)(&(cond.__size))));printf("%s() [%d], cond.__align = %d\n",__FUNCTION__,__LINE__,*((int*)(&(cond.__align))));printf("%s() [%d], mutex.__data = %d\n",__FUNCTION__,__LINE__,*((int*)(&(mutex.__data))));printf("%s() [%d], mutex.__size = %d\n",__FUNCTION__,__LINE__,*((int*)(&(mutex.__size))));printf("%s() [%d], mutex.__align = %d\n",__FUNCTION__,__LINE__,*((int*)(&(mutex.__align))));//pthread_cond_signal(&cond);//仅可以唤醒一个线程pthread_cond_broadcast(&cond);//可以唤醒全部线程printf("%s() [%d], cond.__data = %d\n",__FUNCTION__,__LINE__,*((int*)(&(cond.__data))));printf("%s() [%d], cond.__size = %d\n",__FUNCTION__,__LINE__,*((int*)(&(cond.__size))));printf("%s() [%d], cond.__align = %d\n",__FUNCTION__,__LINE__,*((int*)(&(cond.__align))));printf("%s() [%d], mutex.__data = %d\n",__FUNCTION__,__LINE__,*((int*)(&(mutex.__data))));printf("%s() [%d], mutex.__size = %d\n",__FUNCTION__,__LINE__,*((int*)(&(mutex.__size))));printf("%s() [%d], mutex.__align = %d\n",__FUNCTION__,__LINE__,*((int*)(&(mutex.__align))));sleep(2);printf("%s() [%d], cond.__data = %d\n",__FUNCTION__,__LINE__,*((int*)(&(cond.__data))));thread.join();return 0;
}

打印

线程等待信号到来...
operator()() [23], cond.__data = 0
main() [33], cond.__data = 2
main() [34], cond.__data = 2
main() [37], cond.__size = 2
main() [38], cond.__align = 2
main() [40], mutex.__data = 0
main() [41], mutex.__size = 0
main() [42], mutex.__align = 0
main() [46], cond.__data = 3
main() [47], cond.__size = 3
main() [48], cond.__align = 3
main() [50], mutex.__data = 0
main() [51], mutex.__size = 0
main() [52], mutex.__align = 0
operator()() [26], cond.__data = 3
Thread timed wait for 10s.
main() [55], cond.__data = 3

总结:
在进入线程后,信号没来到之前 cond.__data=0;
当进入main进程时,cond.__data=2;
当pthread_cond_signal(&cond)发送信号后,cond.__data=3,然后线程中的pthread_cond_wait(&cond, &mutex)收到cond.__data=3的信号,
立即释放互斥锁,解除阻塞,程序向下运行,到main函数结束。

3.总结

所以不管是pthread_cond_signal、pthread_cond_broadcast发送信号给pthread_cond_wait,还是pthread_cond_timedwait,最终信号发生变化的pthread_cond_t是的结构体变量__data字段,是它发生的变化,解除线程的阻塞状态。

这篇关于C语言之pthread_cond_t信号变化探究总结(八十)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/161043

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

Android平台播放RTSP流的几种方案探究(VLC VS ExoPlayer VS SmartPlayer)

技术背景 好多开发者需要遴选Android平台RTSP直播播放器的时候,不知道如何选的好,本文针对常用的方案,做个大概的说明: 1. 使用VLC for Android VLC Media Player(VLC多媒体播放器),最初命名为VideoLAN客户端,是VideoLAN品牌产品,是VideoLAN计划的多媒体播放器。它支持众多音频与视频解码器及文件格式,并支持DVD影音光盘,VCD影

科研绘图系列:R语言扩展物种堆积图(Extended Stacked Barplot)

介绍 R语言的扩展物种堆积图是一种数据可视化工具,它不仅展示了物种的堆积结果,还整合了不同样本分组之间的差异性分析结果。这种图形表示方法能够直观地比较不同物种在各个分组中的显著性差异,为研究者提供了一种有效的数据解读方式。 加载R包 knitr::opts_chunk$set(warning = F, message = F)library(tidyverse)library(phyl

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验

git使用的说明总结

Git使用说明 下载安装(下载地址) macOS: Git - Downloading macOS Windows: Git - Downloading Windows Linux/Unix: Git (git-scm.com) 创建新仓库 本地创建新仓库:创建新文件夹,进入文件夹目录,执行指令 git init ,用以创建新的git 克隆仓库 执行指令用以创建一个本地仓库的

SWAP作物生长模型安装教程、数据制备、敏感性分析、气候变化影响、R模型敏感性分析与贝叶斯优化、Fortran源代码分析、气候数据降尺度与变化影响分析

查看原文>>>全流程SWAP农业模型数据制备、敏感性分析及气候变化影响实践技术应用 SWAP模型是由荷兰瓦赫宁根大学开发的先进农作物模型,它综合考虑了土壤-水分-大气以及植被间的相互作用;是一种描述作物生长过程的一种机理性作物生长模型。它不但运用Richard方程,使其能够精确的模拟土壤中水分的运动,而且耦合了WOFOST作物模型使作物的生长描述更为科学。 本文让更多的科研人员和农业工作者

二分最大匹配总结

HDU 2444  黑白染色 ,二分图判定 const int maxn = 208 ;vector<int> g[maxn] ;int n ;bool vis[maxn] ;int match[maxn] ;;int color[maxn] ;int setcolor(int u , int c){color[u] = c ;for(vector<int>::iter

整数Hash散列总结

方法:    step1  :线性探测  step2 散列   当 h(k)位置已经存储有元素的时候,依次探查(h(k)+i) mod S, i=1,2,3…,直到找到空的存储单元为止。其中,S为 数组长度。 HDU 1496   a*x1^2+b*x2^2+c*x3^2+d*x4^2=0 。 x在 [-100,100] 解的个数  const int MaxN = 3000

状态dp总结

zoj 3631  N 个数中选若干数和(只能选一次)<=M 的最大值 const int Max_N = 38 ;int a[1<<16] , b[1<<16] , x[Max_N] , e[Max_N] ;void GetNum(int g[] , int n , int s[] , int &m){ int i , j , t ;m = 0 ;for(i = 0 ;