自动化测试之数据驱动DDT详细篇

2023-10-07 16:59

本文主要是介绍自动化测试之数据驱动DDT详细篇,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

引言

  你是否有过这种感受,在做自动化测试过程中,不论是API 自动化测试还是UI 自动化测试,我们写测试脚本有很大一部分时间都是在准备数据(setUp)、清理数据(tearDown)。因为数据是做自动化测试的至关重要的一个环节。如此看来数据驱动真的十分重要。接下来分享的内容是:Unittest测试框架中常用的数据驱动框架:DDT 。

数据驱动

1、数据驱动是什么?

      数据驱动,指在自动化测试中处理测试数据的方式。

  通常测试数据与功能函数分离,存储在功能函数的外部位置。在自动化测试运行时,数据驱动框架会读取数据源中的数据,把数据作为参数传递到功能函数中,并会根据数据的条数多次运行同一个功能函数。

  数据驱动的数据源可以是函数外的数据集合、CSV 文件、Excel 表格、TXT 文件,以及数据库等。

2、数据驱动的优点?

(1)、减少重复代码
通过以下实例来看下数据驱动是如何减少重复代码的。

如果不使用数据驱动时,并且同一个功能函数存在多个测试数据,你只能多次调用这个功能函数;另外一旦某一个测试数据有更改/删除,你需要在函数调用里去更改相应的测试数据,非常不方便。

如果使用测试驱动时,你的代码可能会是这样的:

# origin_data指向一个文件,这个文件里存储有你所有的测试数据。
origin_data = './tests/data/testdata.csv'# dataDrivenDecorator是你实现数据驱动的装饰器@dataDrivenDecorator(origin_data)
def test_ddt(user, pwd, num):# 实际函数逻辑pass

这种情况下, 你无须进行多次调用,而且当你的测试数据发生改变时, 你仅需要更改数据源文件的数据就可以了。

(2)、数据所属的测试用例失败,不会影响到其他测试数据对应的测试用例
通过以下实例来看下是怎么不会影响到其他测试数据对应的测试用例的。


如果不使用数据驱动之前,假设有以下一个函数:

test_data = [0, 1, 0, 1]
def test_001(data):for x in data:assert x > 0test_ddt(test_data)

由执行结果可以看出,因为test_data 的第一个值是0, 它不大于0。所以断言失败,所有 test_data测试数据集中0后面的测试数据都没有执行。

如果有了数据驱动,则数据驱动会把这一个测试按照测试数据分解成多个测试,所以第一个测试数据失败也不会影响到后面的测试结果。

3、Python 中使用广泛的数据驱动框架有哪些?

  • DDT(Data-Driven Tests),通常结合Unittest 使用

  • parameterized,是Pytest 实现数据驱动的常用框架

DDT 包含哪些装饰器

1 个类装饰器

  ddt 这个类装饰器必须装饰在TestCase 的子类上,TestCase 是Unittest 框架中的一个基类,它实现了Test Runner 驱动测试运行所需的接口(interface)。

2 个方法装饰器

  分别是:data 和 file_data。
  data 装饰器,直接提供测试数据;
  file_data 装饰器则从 JSON 或 YAML 文件加载测试数据。

DDT 的使用步骤如下:

  • 使用@ddt 装饰你的测试类;

  • 使用@data 或者@file_data 装饰你需要数据驱动的测试方法;

  • 如一组测试数据有多个参数,则需unpack,使用@unpack 装饰你的测试方法。

Python 安装DDT :

安装命令:pip install ddt或python -m pip install ddt

(1)、ddt 直接提供数据

from ddt import ddt, data, file_data, unpack
from selenium import webdriver
import unittest
import time# ddt一定是装饰在TestCase的子类上@ddt
class Baidu(unittest.TestCase):def setUp(self):self.driver = webdriver.Chrome()self.driver.implicitly_wait(30)self.base_url = "http://www.baidu.com/"# data表示测试数据是直接提供的。# unpack表示,对于每一组数据,如果它的值是list或者tuple,那么就分拆成独立的参数。@data(['Testing', 'Testing'], ['hello_world.com','Testing'])@unpackdef test_baidu_search(self, search_string, expect_string):driver = self.driverdriver.get(self.base_url + "/")driver.find_element_by_id("kw").send_keys(search_string)driver.find_element_by_id("su").click()time.sleep(2)search_results = driver.find_element_by_xpath('//*[@id="1"]/h3/a').get_attribute('innerHTML')print(search_results)self.assertEqual(expect_string in search_results, True)def tearDown(self):self.driver.quit()if __name__ == "__main__":unittest.main(verbosity=2)

在这个例子中,我直接使用了@data 装饰器。在这个装饰器中,我给出了测试的2 组数据,分别是 ['Testing', 'Testing'] 和 ['hello_world.com', 'Testing'];然后我使用 @unpack 装饰器把每一组数据的数据unpack 成一个个的参数传给我的函数 test_baidu_search。

当你运行上面代码,从结果中会发现虽然我们只有一个测试用例test_baidu_search。但在生成的测试报告里,显示“Run 2 tests in XX”,也就是test_baidu_search 运行了 2 次,这就是DDT 在起作用。

这是多组参数,每组多个数据的情况,如果每组仅有一个数据呢?你仅需要更改如下:

# 如仅有一个参数,那么直接在data里写参数就好。
# 仅有一个参数的情况下,无须再用@unpack装饰测试方法。
@data('data1', 'data2')

(2)、ddt 使用函数提供数据
  ddt 直接提供数据,除去上述的直接把数据写在@data() 的参数中外,还有一个情况,即数据先从函数获取,然后再写入@data() 的参数中。

from ddt import ddt, data, file_data, unpack
from selenium import webdriver
import unittest
import timedef get_test_data():# 这里写你获取测试数据的业务逻辑。# 获取到后,把数据返回即可。# 注意,如果多组数据,需要返回类似([数据1-参数1, 数据1-参数2],[数据2-参数1, 数据2-参数2])这样的格式,方便ddt.data()解析# 解析后返回的数据格式如下:results = (['Testing', 'Testing'], ['hello_world.com', 'Testing'])return results# ddt一定是装饰在TestCase的子类上@ddt
class Baidu(unittest.TestCase):def setUp(self):self.driver = webdriver.Chrome()self.driver.implicitly_wait(30)self.base_url = "http://www.baidu.com/"# data表示data是直接提供的。注意data里的参数我写了函数get_test_data()的返回值,并且以*为前缀,代表返回的是可变参数。# unpack表示,对于每一组数据,如果它的值是list或者tuple,那么就分拆成独立的参数。@data(*get_test_data())@unpackdef test_baidu_search(self, search_string, expect_string):driver = self.driverdriver.get(self.base_url + "/")driver.find_element_by_id("kw").send_keys(search_string)driver.find_element_by_id("su").click()time.sleep(2)search_results = driver.find_element_by_xpath('//*[@id="1"]/h3/a').get_attribute('innerHTML')print(search_results)self.assertEqual(expect_string in search_results, True)def tearDown(self):self.driver.quit()if __name__ == "__main__":unittest.main(verbosity=2)

在上述示例中,我创建了一个函数get_test_data() 用于获取我的测试数据。这个函数可以带参数,也可以不带参数,具体需要根据你的业务逻辑来。

注意:get_test_data() 的返回值,一定需要遵守ddt.data() 可接受的数据格式。

即:一组数据,每个数据为单个的值;多组数据,每组数据为一个列表或者一个字典。

(3)、ddt 使用文件提供数据:其他格式数据文件
  因为 ddt 默认只支持 JSON 和 YAML 格式的数据。但是我想使用其他数据格式怎么办?

  常用的方式有如下两种:

  • 先读取其他格式的文件(例如 Excel 格式),然后创建 ddt 支持的 JSON 或者 YAML 文件,最后把获取到的数据写入这个文件,再使用 @file_data() 即可;

  • 创建一个函数,在函数中读取其他格式的文件并获取数据,将数据直接返回为 @ddt.data() 支持的格式调用即可。

这篇关于自动化测试之数据驱动DDT详细篇的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/159128

相关文章

nginx -t、nginx -s stop 和 nginx -s reload 命令的详细解析(结合应用场景)

《nginx-t、nginx-sstop和nginx-sreload命令的详细解析(结合应用场景)》本文解析Nginx的-t、-sstop、-sreload命令,分别用于配置语法检... 以下是关于 nginx -t、nginx -s stop 和 nginx -s reload 命令的详细解析,结合实际应

Spring boot整合dubbo+zookeeper的详细过程

《Springboot整合dubbo+zookeeper的详细过程》本文讲解SpringBoot整合Dubbo与Zookeeper实现API、Provider、Consumer模式,包含依赖配置、... 目录Spring boot整合dubbo+zookeeper1.创建父工程2.父工程引入依赖3.创建ap

Spring Boot集成Druid实现数据源管理与监控的详细步骤

《SpringBoot集成Druid实现数据源管理与监控的详细步骤》本文介绍如何在SpringBoot项目中集成Druid数据库连接池,包括环境搭建、Maven依赖配置、SpringBoot配置文件... 目录1. 引言1.1 环境准备1.2 Druid介绍2. 配置Druid连接池3. 查看Druid监控

创建Java keystore文件的完整指南及详细步骤

《创建Javakeystore文件的完整指南及详细步骤》本文详解Java中keystore的创建与配置,涵盖私钥管理、自签名与CA证书生成、SSL/TLS应用,强调安全存储及验证机制,确保通信加密和... 目录1. 秘密键(私钥)的理解与管理私钥的定义与重要性私钥的管理策略私钥的生成与存储2. 证书的创建与

Java通过驱动包(jar包)连接MySQL数据库的步骤总结及验证方式

《Java通过驱动包(jar包)连接MySQL数据库的步骤总结及验证方式》本文详细介绍如何使用Java通过JDBC连接MySQL数据库,包括下载驱动、配置Eclipse环境、检测数据库连接等关键步骤,... 目录一、下载驱动包二、放jar包三、检测数据库连接JavaJava 如何使用 JDBC 连接 mys

SQL中如何添加数据(常见方法及示例)

《SQL中如何添加数据(常见方法及示例)》SQL全称为StructuredQueryLanguage,是一种用于管理关系数据库的标准编程语言,下面给大家介绍SQL中如何添加数据,感兴趣的朋友一起看看吧... 目录在mysql中,有多种方法可以添加数据。以下是一些常见的方法及其示例。1. 使用INSERT I

使用Docker构建Python Flask程序的详细教程

《使用Docker构建PythonFlask程序的详细教程》在当今的软件开发领域,容器化技术正变得越来越流行,而Docker无疑是其中的佼佼者,本文我们就来聊聊如何使用Docker构建一个简单的Py... 目录引言一、准备工作二、创建 Flask 应用程序三、创建 dockerfile四、构建 Docker

Python使用vllm处理多模态数据的预处理技巧

《Python使用vllm处理多模态数据的预处理技巧》本文深入探讨了在Python环境下使用vLLM处理多模态数据的预处理技巧,我们将从基础概念出发,详细讲解文本、图像、音频等多模态数据的预处理方法,... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

MySQL 删除数据详解(最新整理)

《MySQL删除数据详解(最新整理)》:本文主要介绍MySQL删除数据的相关知识,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录一、前言二、mysql 中的三种删除方式1.DELETE语句✅ 基本语法: 示例:2.TRUNCATE语句✅ 基本语

Python设置Cookie永不超时的详细指南

《Python设置Cookie永不超时的详细指南》Cookie是一种存储在用户浏览器中的小型数据片段,用于记录用户的登录状态、偏好设置等信息,下面小编就来和大家详细讲讲Python如何设置Cookie... 目录一、Cookie的作用与重要性二、Cookie过期的原因三、实现Cookie永不超时的方法(一)