基于seq2seq的中国对联自动配对技术实践

2023-10-07 10:10

本文主要是介绍基于seq2seq的中国对联自动配对技术实践,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Sequence to Sequence模型这种基于编码--解码的模型已经被谷歌成功应用于机器翻译上。而理论上任意的序列到序列的有监督问题都可以用这种模型。如上一篇文章写的古诗生成。包括这一篇实践性的对联配对。

对对联生成过程中,需要使用LSTM来实现,然后需要设置其编码与解码的相关参数。如下所示:

# 创建基本的LSTM单元
cells = [tf.contrib.rnn.DropoutWrapper(tf.contrib.rnn.BasicLSTMCell(embedding_dim), output_keep_prob=keep_prob) for i in range(3)]stacked_lstm = tf.contrib.rnn.MultiRNNCell(cells)with tf.variable_scope('decoders') as scope:# feed_previous=False, for trainingdecode_outputs, decode_state = tf.contrib.legacy_seq2seq.embedding_rnn_seq2seq(encode_input,decode_input,stacked_lstm,num_encoder_symbols=input_vocab_size,num_decoder_symbols=output_vocab_size,embedding_size=embedding_dim)scope.reuse_variables()decode_outputs_test, decode_state_test = tf.contrib.legacy_seq2seq.embedding_rnn_seq2seq(encode_input,decode_input,stacked_lstm,num_encoder_symbols=input_vocab_size,num_decoder_symbols=output_vocab_size,embedding_size=embedding_dim,feed_previous=True)loss_weights = [tf.ones_like(l, dtype=tf.float32) for l in labels]
loss = tf.contrib.legacy_seq2seq.sequence_loss(decode_outputs, labels, loss_weights, output_vocab_size)optimizer = tf.train.AdamOptimizer(0.001)
train_op = optimizer.minimize(loss)


(2) 测试例子如下:其中挂号内为原有的配对。

测试例子:
悼念先严三周年▁▁▁(痛表后生一片心▁▁▁) -> 诗留人间百年诗▁▁▁
百岁人歌长寿酒▁▁▁(万载花开太平春▁▁▁) -> 千秋再爱自长春▁▁▁
黄花酿酒三杯醉▁▁▁(绣阁增辉两烛燃▁▁▁) -> 碧水池霜百岁人▁▁▁
艳阳照大厦春华竞发▁(甘露洒人间瑞气勃生▁) -> 看日开新地壮天更高▁
延龄人种神仙草▁▁▁(纪竹新开甲子花▁▁▁) -> 蜜月欣逢百岁图▁▁▁


测试例子:
白发朱颜喜登上寿▁▁(丰衣足食乐享晚年▁▁) -> 丰山足食享享高秋▁▁
体健神恰晚景好▁▁▁(书声墨韵老来红▁▁▁) -> 天明萱草喜无鸯▁▁▁
大好良辰春光明媚▁▁(重开令甲上寿期颐▁▁) -> 文明盛世喜此如山▁▁
宝马迎来云外客▁▁▁(香车送出月中仙▁▁▁) -> 金牛犁栋喜雄风▁▁▁
莲子杯中金各酒▁▁▁(桃花盏上玉台诗▁▁▁) -> 桃香嫩柳柳丝凰▁▁▁

测试例子:
赏灯极乐繁华地▁▁▁(秉灯同游不夜天▁▁▁) -> 养手同来幸福花▁▁▁
寒笳送走人间腊▁▁▁(晓角吹回雪里春▁▁▁) -> 夜雨梅花蝶萝香▁▁▁
知识鼓满青春风帆▁▁(劳动展开爱情羽翼▁▁) -> 赤策文章浩气清风▁▁
贮在玉壶由人造▁▁▁(结成晶块夺天工▁▁▁) -> 誓知甘作口子余▁▁▁
灰飞薛管声谐凤▁▁▁(玉种蓝田兆梦熊▁▁▁) -> 何洁堪媳荐良仑▁▁▁

针对这两种测试,也验证了人工智能是否真的会创作。利用这种seq2seq写出的古诗或者对联,的确会出现训练集合外的句子,非常有意思,完全是创作的味道。不过呢,目前的仅仅还是测试例子,对语义上有些地方,特别是里面的思想和语义理解还有待深入。这可能需要更多的知识、常识、典故等的配合。

这篇关于基于seq2seq的中国对联自动配对技术实践的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/157641

相关文章

Python获取中国节假日数据记录入JSON文件

《Python获取中国节假日数据记录入JSON文件》项目系统内置的日历应用为了提升用户体验,特别设置了在调休日期显示“休”的UI图标功能,那么问题是这些调休数据从哪里来呢?我尝试一种更为智能的方法:P... 目录节假日数据获取存入jsON文件节假日数据读取封装完整代码项目系统内置的日历应用为了提升用户体验,

微信公众号脚本-获取热搜自动新建草稿并发布文章

《微信公众号脚本-获取热搜自动新建草稿并发布文章》本来想写一个自动化发布微信公众号的小绿书的脚本,但是微信公众号官网没有小绿书的接口,那就写一个获取热搜微信普通文章的脚本吧,:本文主要介绍微信公众... 目录介绍思路前期准备环境要求获取接口token获取热搜获取热搜数据下载热搜图片给图片加上标题文字上传图片

SpringBoot3实现Gzip压缩优化的技术指南

《SpringBoot3实现Gzip压缩优化的技术指南》随着Web应用的用户量和数据量增加,网络带宽和页面加载速度逐渐成为瓶颈,为了减少数据传输量,提高用户体验,我们可以使用Gzip压缩HTTP响应,... 目录1、简述2、配置2.1 添加依赖2.2 配置 Gzip 压缩3、服务端应用4、前端应用4.1 N

Spring Boot 配置文件之类型、加载顺序与最佳实践记录

《SpringBoot配置文件之类型、加载顺序与最佳实践记录》SpringBoot的配置文件是灵活且强大的工具,通过合理的配置管理,可以让应用开发和部署更加高效,无论是简单的属性配置,还是复杂... 目录Spring Boot 配置文件详解一、Spring Boot 配置文件类型1.1 applicatio

Java利用JSONPath操作JSON数据的技术指南

《Java利用JSONPath操作JSON数据的技术指南》JSONPath是一种强大的工具,用于查询和操作JSON数据,类似于SQL的语法,它为处理复杂的JSON数据结构提供了简单且高效... 目录1、简述2、什么是 jsONPath?3、Java 示例3.1 基本查询3.2 过滤查询3.3 递归搜索3.4

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2

SpringBoot中封装Cors自动配置方式

《SpringBoot中封装Cors自动配置方式》:本文主要介绍SpringBoot中封装Cors自动配置方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录SpringBoot封装Cors自动配置背景实现步骤1. 创建 GlobalCorsProperties

idea中创建新类时自动添加注释的实现

《idea中创建新类时自动添加注释的实现》在每次使用idea创建一个新类时,过了一段时间发现看不懂这个类是用来干嘛的,为了解决这个问题,我们可以设置在创建一个新类时自动添加注释,帮助我们理解这个类的用... 目录前言:详细操作:步骤一:点击上方的 文件(File),点击&nbmyHIgsp;设置(Setti

tomcat多实例部署的项目实践

《tomcat多实例部署的项目实践》Tomcat多实例是指在一台设备上运行多个Tomcat服务,这些Tomcat相互独立,本文主要介绍了tomcat多实例部署的项目实践,具有一定的参考价值,感兴趣的可... 目录1.创建项目目录,测试文China编程件2js.创建实例的安装目录3.准备实例的配置文件4.编辑实例的

Python 中的异步与同步深度解析(实践记录)

《Python中的异步与同步深度解析(实践记录)》在Python编程世界里,异步和同步的概念是理解程序执行流程和性能优化的关键,这篇文章将带你深入了解它们的差异,以及阻塞和非阻塞的特性,同时通过实际... 目录python中的异步与同步:深度解析与实践异步与同步的定义异步同步阻塞与非阻塞的概念阻塞非阻塞同步