scheduler_tick函数详解

2023-10-07 07:58
文章标签 函数 详解 scheduler tick

本文主要是介绍scheduler_tick函数详解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

scheduler_tick是调度器中的一个核心重要的函数,它叫做周期调度器,驱动调度器运行的机制之一。

event_handler()-->tick_handle_periodic()->tik_periodic()->update_process_times()-->scheduler_tick()

以上是该函数的调用回溯,由时钟中断驱动着这个函数的运行,每个CPU tick到来时都会执行一次。这里还有一个知识点要涉及到,那就是内核的时间子系统,在SMP环境下,每一个CPU都自己的tick device,这些tick device中有一个被选择做global tick device,global tick device负责维护整个系统的jiffies以及更新基于jiffies进行的全系统统计信息。而本文介绍的scheduler_tick显然是每个CPU自己的tick到来时要执行的操作,因为每个CPU由自己的runquque,管理自己的就绪进程,因此对应的时钟中断肯定也是属于该CPU自身的。

下面将按照代码的顺序介绍它做了什么内容。

void scheduler_tick(void)
{int cpu = smp_processor_id();struct rq *rq = cpu_rq(cpu);struct task_struct *curr = rq->curr;sched_clock_tick();  //----------(1)raw_spin_lock(&rq->lock);update_rq_clock(rq);     //---------(2)curr->sched_class->task_tick(rq, curr, 0); //-------(3)update_cpu_load_active(rq); //-----------(4)raw_spin_unlock(&rq->lock);perf_event_task_tick();#ifdef CONFIG_SMPrq->idle_balance = idle_cpu(cpu);trigger_load_balance(rq);
#endifrq_last_tick_reset(rq);
}

(1)更新调度器使用的clock信息
(2)更新当前runqueue中的clock时间,基于(1)的clock来获取
(3)执行不同调度类中的task_tick回调函数
(4)更新该runqueue相关的CPU load负载,会根据cfs_rq中计算的runnable_load_avg来更新CPU负载,而runnable_load_avg的更新在我的另一篇博客中介绍PELT。

这个函数的关键处理就是调用:

  curr->sched_class->task_tick(rq, curr, 0);

注意它传入的参数,是当前runqueue中的curr变量,也就是当前正在运行着的进程。这里会调用调度类中的task_tick回调,我们主要以CFS调度器来做介绍。

static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
{struct cfs_rq *cfs_rq;struct sched_entity *se = &curr->se;for_each_sched_entity(se) {cfs_rq = cfs_rq_of(se);entity_tick(cfs_rq, se, queued);  //(1)}if (numabalancing_enabled)task_tick_numa(rq, curr);update_rq_runnable_avg(rq, 1);  //(2)
}

其中关键的两个步骤:
(1)执行调度实体的tick函数更新统计量和vruntime
(2)更新runqueue的avg统计量和负载

 static voidentity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued){/** Update run-time statistics of the 'current'.*/update_curr(cfs_rq);  //(1)/** Ensure that runnable average is periodically updated.*/update_entity_load_avg(curr, 1);  //(2)update_cfs_rq_blocked_load(cfs_rq, 1);update_cfs_shares(cfs_rq);#ifdef CONFIG_SCHED_HRTICK/** queued ticks are scheduled to match the slice, so don't bother* validating it and just reschedule.*/if (queued) {resched_curr(rq_of(cfs_rq));return;}/** don't let the period tick interfere with the hrtick preemption*/if (!sched_feat(DOUBLE_TICK) &&hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))return;#endifif (cfs_rq->nr_running > 1)check_preempt_tick(cfs_rq, curr); //(3)}

(1)update_curr更新当前调度实体的runtime信息,包括exec time实际执行时间,以及vruntime,虚拟时间
(2)更新调度实体的avg负载,以便于给后面runqueue负载计算使用
(3) check_preempt_tick用于判断当前情况是否需要执行系统调度,这个是调度关键函数。

 static voidcheck_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr){unsigned long ideal_runtime, delta_exec;struct sched_entity *se;s64 delta;ideal_runtime = sched_slice(cfs_rq, curr);delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;if (delta_exec > ideal_runtime) {resched_curr(rq_of(cfs_rq));/** The current task ran long enough, ensure it doesn't get* re-elected due to buddy favours.*/clear_buddies(cfs_rq, curr);return;}/** Ensure that a task that missed wakeup preemption by a* narrow margin doesn't have to wait for a full slice.* This also mitigates buddy induced latencies under load.*/if (delta_exec < sysctl_sched_min_granularity)return;se = __pick_first_entity(cfs_rq);delta = curr->vruntime - se->vruntime;if (delta < 0)return;if (delta > ideal_runtime)resched_curr(rq_of(cfs_rq));}

sched_slice计算当前进程理论运行的时间片,是一个实际时间,通过比较当前进程实际运行时间delta_exec,如果实际运行时间超过理论得到的时间片,那么说明需要调度了,设置调度标志位后返回,否则需要判断如下条件:
1.当前进程运行时间小于系统要求的最小时间片0.75ms,返回不进行调度行为
2.pick平衡二叉树中最左侧叶子节点的调度实体,比较当前进程和它的vruntime值,如果当前进程vruntime大于最左侧的进程,并且差值超过当前的理论运行时间片,那么也需要设置调度标志位进行调度。

这篇关于scheduler_tick函数详解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/157070

相关文章

Python中注释使用方法举例详解

《Python中注释使用方法举例详解》在Python编程语言中注释是必不可少的一部分,它有助于提高代码的可读性和维护性,:本文主要介绍Python中注释使用方法的相关资料,需要的朋友可以参考下... 目录一、前言二、什么是注释?示例:三、单行注释语法:以 China编程# 开头,后面的内容为注释内容示例:示例:四

mysql表操作与查询功能详解

《mysql表操作与查询功能详解》本文系统讲解MySQL表操作与查询,涵盖创建、修改、复制表语法,基本查询结构及WHERE、GROUPBY等子句,本文结合实例代码给大家介绍的非常详细,感兴趣的朋友跟随... 目录01.表的操作1.1表操作概览1.2创建表1.3修改表1.4复制表02.基本查询操作2.1 SE

MySQL中的锁机制详解之全局锁,表级锁,行级锁

《MySQL中的锁机制详解之全局锁,表级锁,行级锁》MySQL锁机制通过全局、表级、行级锁控制并发,保障数据一致性与隔离性,全局锁适用于全库备份,表级锁适合读多写少场景,行级锁(InnoDB)实现高并... 目录一、锁机制基础:从并发问题到锁分类1.1 并发访问的三大问题1.2 锁的核心作用1.3 锁粒度分

MySQL数据库中ENUM的用法是什么详解

《MySQL数据库中ENUM的用法是什么详解》ENUM是一个字符串对象,用于指定一组预定义的值,并可在创建表时使用,下面:本文主要介绍MySQL数据库中ENUM的用法是什么的相关资料,文中通过代码... 目录mysql 中 ENUM 的用法一、ENUM 的定义与语法二、ENUM 的特点三、ENUM 的用法1

MySQL count()聚合函数详解

《MySQLcount()聚合函数详解》MySQL中的COUNT()函数,它是SQL中最常用的聚合函数之一,用于计算表中符合特定条件的行数,本文给大家介绍MySQLcount()聚合函数,感兴趣的朋... 目录核心功能语法形式重要特性与行为如何选择使用哪种形式?总结深入剖析一下 mysql 中的 COUNT

一文详解Git中分支本地和远程删除的方法

《一文详解Git中分支本地和远程删除的方法》在使用Git进行版本控制的过程中,我们会创建多个分支来进行不同功能的开发,这就容易涉及到如何正确地删除本地分支和远程分支,下面我们就来看看相关的实现方法吧... 目录技术背景实现步骤删除本地分支删除远程www.chinasem.cn分支同步删除信息到其他机器示例步骤

Go语言数据库编程GORM 的基本使用详解

《Go语言数据库编程GORM的基本使用详解》GORM是Go语言流行的ORM框架,封装database/sql,支持自动迁移、关联、事务等,提供CRUD、条件查询、钩子函数、日志等功能,简化数据库操作... 目录一、安装与初始化1. 安装 GORM 及数据库驱动2. 建立数据库连接二、定义模型结构体三、自动迁

mysql中的服务器架构详解

《mysql中的服务器架构详解》:本文主要介绍mysql中的服务器架构,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、mysql服务器架构解释3、总结1、背景简单理解一下mysqphpl的服务器架构。2、mysjsql服务器架构解释mysql的架

ModelMapper基本使用和常见场景示例详解

《ModelMapper基本使用和常见场景示例详解》ModelMapper是Java对象映射库,支持自动映射、自定义规则、集合转换及高级配置(如匹配策略、转换器),可集成SpringBoot,减少样板... 目录1. 添加依赖2. 基本用法示例:简单对象映射3. 自定义映射规则4. 集合映射5. 高级配置匹

MySQL 中 ROW_NUMBER() 函数最佳实践

《MySQL中ROW_NUMBER()函数最佳实践》MySQL中ROW_NUMBER()函数,作为窗口函数为每行分配唯一连续序号,区别于RANK()和DENSE_RANK(),特别适合分页、去重... 目录mysql 中 ROW_NUMBER() 函数详解一、基础语法二、核心特点三、典型应用场景1. 数据分