机器学习必修课 - 使用管道 Pipeline

2023-10-07 05:01

本文主要是介绍机器学习必修课 - 使用管道 Pipeline,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目标:学习使用管道(pipeline)来提高机器学习代码的效率。

1. 运行环境:Google Colab

import pandas as pd
from sklearn.model_selection import train_test_split
!git clone https://github.com/JeffereyWu/Housing-prices-data.git
  • 下载数据集

2. 加载房屋价格数据集,进行数据预处理,并将数据划分为训练集和验证集

# Read the data
X_full = pd.read_csv('/content/Housing-prices-data/train.csv', index_col='Id')
X_test_full = pd.read_csv('/content/Housing-prices-data/test.csv', index_col='Id')# Remove rows with missing target, separate target from predictors
X_full.dropna(axis=0, subset=['SalePrice'], inplace=True)
y = X_full.SalePrice
X_full.drop(['SalePrice'], axis=1, inplace=True)# Break off validation set from training data
X_train_full, X_valid_full, y_train, y_valid = train_test_split(X_full, y, train_size=0.8, test_size=0.2,random_state=0)
  • 使用Pandas的read_csv函数从指定路径读取训练集和测试集的CSV文件。index_col='Id'表示将数据集中的’Id’列作为索引列。
  • X_full数据中删除了带有缺失目标值的行,这是因为目标值(‘SalePrice’)是我们要预测的值,所以必须确保每个样本都有一个目标值。然后,将目标值从X_full数据中分离出来,存储在变量y中,并从X_full中删除了目标值列,以便将其视为预测特征。

3. 选择具有相对低基数(唯一值数量较少)的分类(categorical)列

# "Cardinality" means the number of unique values in a column
# Select categorical columns with relatively low cardinality (convenient but arbitrary)
categorical_cols = [cname for cname in X_train_full.columns ifX_train_full[cname].nunique() < 10 and X_train_full[cname].dtype == "object"]
  • 识别具有相对较少不同类别的分类列,因为这些列更适合进行独热编码,而不会引入太多的新特征。

4. 选择数值型(numerical)列

# Select numerical columns
numerical_cols = [cname for cname in X_train_full.columns if X_train_full[cname].dtype in ['int64', 'float64']]
  • 识别数据集中包含数值数据的列,因为这些列通常用于构建数值特征,并且需要用于训练和评估数值型机器学习模型。

5. 将数据集中的列限制在所选的分类(categorical)列和数值(numerical)列上

# Keep selected columns only
my_cols = categorical_cols + numerical_cols
X_train = X_train_full[my_cols].copy()
X_valid = X_valid_full[my_cols].copy()
X_test = X_test_full[my_cols].copy()
  • 创建了一个名为my_cols的列表,其中包含了要保留的列名
  • 使用X_train_full[my_cols].copy()X_valid_full[my_cols].copy()从原始训练数据集(X_train_fullX_valid_full)中创建了新的数据集(X_trainX_valid)。这两个数据集只包含了my_cols中列名所对应的列,其他列被丢弃了。最后,同样的操作也被应用到测试数据集上,创建了包含相同列的测试数据集X_test
from sklearn.compose import ColumnTransformer
from sklearn.pipeline import Pipeline
from sklearn.impute import SimpleImputer
from sklearn.preprocessing import OneHotEncoder
from sklearn.ensemble import RandomForestRegressor
from sklearn.metrics import mean_absolute_error

6. 准备数值型数据和分类型数据以供机器学习模型使用

# Preprocessing for numerical data
numerical_transformer = SimpleImputer(strategy='constant')# Preprocessing for categorical data
categorical_transformer = Pipeline(steps=[('imputer', SimpleImputer(strategy='most_frequent')),('onehot', OneHotEncoder(handle_unknown='ignore'))
])# Bundle preprocessing for numerical and categorical data
preprocessor = ColumnTransformer(transformers=[('num', numerical_transformer, numerical_cols),('cat', categorical_transformer, categorical_cols)])
  • 创建了一个名为numerical_transformer的预处理器,用于处理数值型数据。在这里,使用了SimpleImputer,并设置了策略为’constant’,表示将缺失的数值数据填充为一个常数值。
  • 使用SimpleImputer来填充缺失值,策略为’most_frequent’,表示使用出现频率最高的值来填充缺失的分类数据。
  • 使用OneHotEncoder来执行独热编码,将分类数据转换成二进制的形式,并且设置了handle_unknown='ignore',以处理在转换过程中遇到未知的分类值。
  • 使用ColumnTransformer来组合数值型和分类型数据的预处理器,将它们一起构建成一个整体的预处理过程。

7. 建立、训练和评估一个随机森林回归模型

# Define model
model = RandomForestRegressor(n_estimators=100, random_state=0)# Bundle preprocessing and modeling code in a pipeline
clf = Pipeline(steps=[('preprocessor', preprocessor),('model', model)])# Preprocessing of training data, fit model 
clf.fit(X_train, y_train)# Preprocessing of validation data, get predictions
preds = clf.predict(X_valid)print('MAE:', mean_absolute_error(y_valid, preds))
  • 创建了一个名为model的机器学习模型。在这里,使用了随机森林回归模型,它是一个基于决策树的集成学习模型,包含了100颗决策树,并设置了随机种子random_state为0,以确保结果的可重复性。
  • 创建了一个名为clf的机器学习管道(Pipeline)。管道将数据预处理步骤(preprocessor)和模型训练步骤(model)捆绑在一起,确保数据首先被预处理,然后再用于模型训练。
  • MAE是一种衡量模型预测误差的指标,其值越小表示模型的性能越好。

MAE: 17861.780102739725

8. 重新进行数据预处理和定义一个机器学习模型

# Preprocessing for numerical data
numerical_transformer = SimpleImputer(strategy='constant')# Preprocessing for categorical data
categorical_transformer = Pipeline(steps=[('imputer', SimpleImputer(strategy='constant')),('onehot', OneHotEncoder(handle_unknown='ignore'))
])# Bundle preprocessing for numerical and categorical data
preprocessor = ColumnTransformer(transformers=[('num', numerical_transformer, numerical_cols),('cat', categorical_transformer, categorical_cols)])# Define model
model = RandomForestRegressor(n_estimators=100, random_state=0)
  • 使用SimpleImputer来填充分类型数据中的缺失值,策略改为’constant’,改用常数值填充。
# Bundle preprocessing and modeling code in a pipeline
my_pipeline = Pipeline(steps=[('preprocessor', preprocessor),('model', model)])# Preprocessing of training data, fit model 
my_pipeline.fit(X_train, y_train)# Preprocessing of validation data, get predictions
preds = my_pipeline.predict(X_valid)# Evaluate the model
score = mean_absolute_error(y_valid, preds)
print('MAE:', score)

MAE: 17621.3197260274

9. 再一次进行数据预处理和定义一个机器学习模型

# 自定义数值型数据的预处理步骤
numerical_transformer = Pipeline(steps=[('imputer', SimpleImputer(strategy='mean')),  # 可以使用均值填充缺失值
])# 自定义分类型数据的预处理步骤
categorical_transformer = Pipeline(steps=[('imputer', SimpleImputer(strategy='most_frequent')),  # 使用最频繁的值填充缺失值('onehot', OneHotEncoder(handle_unknown='ignore'))  # 执行独热编码
])# 定义自己的模型
model = RandomForestRegressor(n_estimators=200, random_state=42)  # 增加决策树数量,设置随机种子# 将自定义的预处理和模型捆绑在一起
clf = Pipeline(steps=[('preprocessor', preprocessor),('model', model)])# 预处理训练数据,训练模型
clf.fit(X_train, y_train)# 预处理验证数据,获取预测结果
preds = clf.predict(X_valid)print('MAE:', mean_absolute_error(y_valid, preds))

MAE: 17468.0611130137

# Preprocessing of test data, fit model
preds_test = clf.predict(X_test)
# Save test predictions to file
output = pd.DataFrame({'Id': X_test.index,'SalePrice': preds_test})
output.to_csv('submission.csv', index=False)

这篇关于机器学习必修课 - 使用管道 Pipeline的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/156183

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

中文分词jieba库的使用与实景应用(一)

知识星球:https://articles.zsxq.com/id_fxvgc803qmr2.html 目录 一.定义: 精确模式(默认模式): 全模式: 搜索引擎模式: paddle 模式(基于深度学习的分词模式): 二 自定义词典 三.文本解析   调整词出现的频率 四. 关键词提取 A. 基于TF-IDF算法的关键词提取 B. 基于TextRank算法的关键词提取

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

Hadoop数据压缩使用介绍

一、压缩原则 (1)运算密集型的Job,少用压缩 (2)IO密集型的Job,多用压缩 二、压缩算法比较 三、压缩位置选择 四、压缩参数配置 1)为了支持多种压缩/解压缩算法,Hadoop引入了编码/解码器 2)要在Hadoop中启用压缩,可以配置如下参数

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

Makefile简明使用教程

文章目录 规则makefile文件的基本语法:加在命令前的特殊符号:.PHONY伪目标: Makefilev1 直观写法v2 加上中间过程v3 伪目标v4 变量 make 选项-f-n-C Make 是一种流行的构建工具,常用于将源代码转换成可执行文件或者其他形式的输出文件(如库文件、文档等)。Make 可以自动化地执行编译、链接等一系列操作。 规则 makefile文件

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

pdfmake生成pdf的使用

实际项目中有时会有根据填写的表单数据或者其他格式的数据,将数据自动填充到pdf文件中根据固定模板生成pdf文件的需求 文章目录 利用pdfmake生成pdf文件1.下载安装pdfmake第三方包2.封装生成pdf文件的共用配置3.生成pdf文件的文件模板内容4.调用方法生成pdf 利用pdfmake生成pdf文件 1.下载安装pdfmake第三方包 npm i pdfma