Linux的系统性能监测参数获取方法介绍

2024-09-08 09:48

本文主要是介绍Linux的系统性能监测参数获取方法介绍,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!


  目前的工程需要简单的监测一下Linux系统的:CPU负载、内存消耗情况、几个指定目录的磁盘空间、磁盘I/O、swap的情况还有就是网络流量。
  Linux下的性能检测工具其实都有很多。
  mrtg(http://people.ee.ethz.ch/~oetiker/webtools/mrtg/)就是一个很不错的选择。不过用mrtg就要装sysstat、apache、snmp、perl之类的东西。而且安装也要好几个步骤,似乎比较麻烦。本来也想直接调用sar、vmstat之类的命令,parse一下结果就算了。哪知道发现不同的版本的linux这些命令的结果也都是不一样。既然要按版本 parse它们的结果,那还不如直接去系统里面获得算了。于是研究了一下sysstat(http://freshmeat.net/projects/sysstat/)和gkrellm(http://gkrellm.net )的源代码,找到监测性能的数据所在。
  1、CPU
  在文件"/proc/stat"里面就包含了CPU的信息。每一个CPU的每一tick用在什么地方都在这个文件里面记着。后面的数字含义分别是: user、nice、sys、idle、iowait。有些版本的kernel没有iowait这一项。这些数值表示从开机到现在,CPU的每tick用在了哪里。例如:
  cpu0 256279030 0 11832528 1637168262
  就是cpu0从开机到现在有 256279030 tick用在了user消耗,11832528用在了sys消耗。所以如果想计算单位时间(例如1s)里面CPU的负载,那只需要计算1秒前后数值的差除以每一秒的tick数量就可以了。gkrellm就是这样实现的:((200 * (v2 - v1) / CPU_TICKS_PER_SECOND) + 1) /2
  例如,第一次读取/proc/stat,user的值是256279030;一秒以后再读一次,值是256289030,那么CPU在这一秒的user消耗就是:((200 * (256289030 - 256279030) / CPU_TICKS_PER_SECOND) + 1) /2 = ((10000 * 200 / 1000000) + 1) / 2 = 1%了。

这篇关于Linux的系统性能监测参数获取方法介绍的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1147779

相关文章

Vue3 的 shallowRef 和 shallowReactive:优化性能

大家对 Vue3 的 ref 和 reactive 都很熟悉,那么对 shallowRef 和 shallowReactive 是否了解呢? 在编程和数据结构中,“shallow”(浅层)通常指对数据结构的最外层进行操作,而不递归地处理其内部或嵌套的数据。这种处理方式关注的是数据结构的第一层属性或元素,而忽略更深层次的嵌套内容。 1. 浅层与深层的对比 1.1 浅层(Shallow) 定义

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

性能测试介绍

性能测试是一种测试方法,旨在评估系统、应用程序或组件在现实场景中的性能表现和可靠性。它通常用于衡量系统在不同负载条件下的响应时间、吞吐量、资源利用率、稳定性和可扩展性等关键指标。 为什么要进行性能测试 通过性能测试,可以确定系统是否能够满足预期的性能要求,找出性能瓶颈和潜在的问题,并进行优化和调整。 发现性能瓶颈:性能测试可以帮助发现系统的性能瓶颈,即系统在高负载或高并发情况下可能出现的问题

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

水位雨量在线监测系统概述及应用介绍

在当今社会,随着科技的飞速发展,各种智能监测系统已成为保障公共安全、促进资源管理和环境保护的重要工具。其中,水位雨量在线监测系统作为自然灾害预警、水资源管理及水利工程运行的关键技术,其重要性不言而喻。 一、水位雨量在线监测系统的基本原理 水位雨量在线监测系统主要由数据采集单元、数据传输网络、数据处理中心及用户终端四大部分构成,形成了一个完整的闭环系统。 数据采集单元:这是系统的“眼睛”,

Hadoop数据压缩使用介绍

一、压缩原则 (1)运算密集型的Job,少用压缩 (2)IO密集型的Job,多用压缩 二、压缩算法比较 三、压缩位置选择 四、压缩参数配置 1)为了支持多种压缩/解压缩算法,Hadoop引入了编码/解码器 2)要在Hadoop中启用压缩,可以配置如下参数

linux-基础知识3

打包和压缩 zip 安装zip软件包 yum -y install zip unzip 压缩打包命令: zip -q -r -d -u 压缩包文件名 目录和文件名列表 -q:不显示命令执行过程-r:递归处理,打包各级子目录和文件-u:把文件增加/替换到压缩包中-d:从压缩包中删除指定的文件 解压:unzip 压缩包名 打包文件 把压缩包从服务器下载到本地 把压缩包上传到服务器(zip

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G