并查集基础与简单扩展应用

2024-09-08 04:04

本文主要是介绍并查集基础与简单扩展应用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

并查集

  • 基础题目
    • 路径压缩
  • 扩展应用
    • 扩展题目1
    • 扩展题目2

并查集的结构是一棵树

并查集有两种功能,一种是判断两个元素是否在同一集合,第二种是合并两个集合

并查集的实现需要记录每个节点的父亲节点

判断两个元素是否在同一集合,即判断两个元素的祖宗节点是否是一个节点(祖宗代表整棵树的根节点)

合并两个集合,即将任意一个集合祖宗的爸爸改为另一个集合的祖宗


基础题目

一共有 n n n 个数,编号是 1 ∼ n 1 \sim n 1n,最开始每个数各自在一个集合中。

现在要进行 m m m 个操作,操作共有两种:

  1. M a b,将编号为 a a a b b b 的两个数所在的集合合并,如果两个数已经在同一个集合中,则忽略这个操作;
  2. Q a b,询问编号为 a a a b b b 的两个数是否在同一个集合中;

输入格式

第一行输入整数 n n n m m m

接下来 m m m 行,每行包含一个操作指令,指令为 M a bQ a b 中的一种。

输出格式

对于每个询问指令 Q a b,都要输出一个结果,如果 a a a b b b 在同一集合内,则输出 Yes,否则输出 No

每个结果占一行。

数据范围

1 ≤ n , m ≤ 1 0 5 1 \le n,m \le 10^5 1n,m105

输入样例:

4 5
M 1 2
M 3 4
Q 1 2
Q 1 3
Q 3 4

输出样例:

Yes
No
Yes

路径压缩

路径压缩的意思是将一个集合当中的除了 根节点的节点的父节点全部指向根节点,**这样做的目的是大大降低了每次找祖宗的时间

如下图所示
在这里插入图片描述

并查集需要提供一个 函数用于 查找每个元素的祖宗,路径压缩可以在该函数中实现

在这里插入图片描述
数组p记录的是该下标元素的父亲

在刚开始,每个编号自己是一个集合,它们的父亲是他们自己

在这里插入图片描述

#include <iostream>
using namespace std;const int N = 1e5+10;int p[N];
int n, m;//找到元素x 的祖宗
int find(int x)
{//如果x自己不是祖宗,则它的爸爸等于它爸爸的爸爸...if (p[x] != x) p[x] = find(p[x]);//一直递到祖宗后开始归return p[x];              //把祖宗的位置归到儿子们
}int main()
{cin >> n >> m;for (int i = 1; i <= n; i++) p[i] = i;//初始化//最初每个元素自己是一个集合while (m --){char op[3];int a, b;scanf("%s%d%d", op, &a, &b);//先获取祖先,避免重复进入函数浪费时间int pa = find(a), pb = find(b);if (op[0] == 'M'){if (pa != pb) //祖先不同{p[pa] = pb;//a的祖先的父亲是b的祖先}}else if (op[0] == 'Q'){//祖先不同则不在一个集合当中if (pa != pb) printf("No\n");else printf("Yes\n");}}return 0;
}

扩展应用

在使用并查集时,可以在原有基础上维护一些额外的东西

扩展题目1

给定一个包含 n n n 个点(编号为 1 ∼ n 1 \sim n 1n)的无向图,初始时图中没有边。

现在要进行 m m m 个操作,操作共有三种:

  1. C a b,在点 a a a 和点 b b b 之间连一条边, a a a b b b 可能相等;
  2. Q1 a b,询问点 a a a 和点 b b b 是否在同一个连通块中, a a a b b b 可能相等;
  3. Q2 a,询问点 a a a 所在连通块中点的数量;

输入格式

第一行输入整数 n n n m m m

接下来 m m m 行,每行包含一个操作指令,指令为 C a bQ1 a bQ2 a 中的一种。

输出格式

对于每个询问指令 Q1 a b,如果 a a a b b b 在同一个连通块中,则输出 Yes,否则输出 No

对于每个询问指令 Q2 a,输出一个整数表示点 a a a 所在连通块中点的数量

每个结果占一行。

数据范围

1 ≤ n , m ≤ 1 0 5 1 \le n,m \le 10^5 1n,m105

输入样例:

5 5
C 1 2
Q1 1 2
Q2 1
C 2 5
Q2 5

输出样例:

Yes
2
3

该题目需要维护一个整个集合当中元素的数量,需要额外创建一个数组来存储

不妨创建一个sz数组,每个集合的根节点,也就是所有点的祖宗,对应的值为整个集合节点的数量

在这里插入图片描述

扩展题目2

动物王国中有三类动物 A , B , C A,B,C A,B,C,这三类动物的食物链构成了有趣的环形。

A A A B B B B B B C C C C C C A A A

现有 N N N 个动物,以 1 ∼ N 1 \sim N 1N 编号。

每个动物都是 A , B , C A,B,C A,B,C 中的一种,但是我们并不知道它到底是哪一种。

有人用两种说法对这 N N N 个动物所构成的食物链关系进行描述:

第一种说法是 1 X Y,表示 X X X Y Y Y 是同类。

第二种说法是 2 X Y,表示 X X X Y Y Y

此人对 N N N 个动物,用上述两种说法,一句接一句地说出 K K K 句话,这 K K K 句话有的是真的,有的是假的。

当一句话满足下列三条之一时,这句话就是假话,否则就是真话。

  1. 当前的话与前面的某些真的话冲突,就是假话;
  2. 当前的话中 X X X Y Y Y N N N 大,就是假话;
  3. 当前的话表示 X X X X X X,就是假话。

你的任务是根据给定的 N N N K K K 句话,输出假话的总数。

输入格式

第一行是两个整数 N N N K K K,以一个空格分隔。

以下 K K K 行每行是三个正整数 D , X , Y D,X,Y DXY,两数之间用一个空格隔开,其中 D D D 表示说法的种类。

D = 1 D=1 D=1,则表示 X X X Y Y Y 是同类。

D = 2 D=2 D=2,则表示 X X X Y Y Y

输出格式

只有一个整数,表示假话的数目。

数据范围

1 ≤ N ≤ 50000 1 \le N \le 50000 1N50000,
0 ≤ K ≤ 100000 0 \le K \le 100000 0K100000

输入样例:

100 7
1 101 1 
2 1 2
2 2 3 
2 3 3 
1 1 3 
2 3 1 
1 5 5

输出样例:

3

思路:我们需要额外维护一个每个节点到父节点的距离,路径压缩后也就是到根节点的距离

无论是什么动物,一旦说了它与另一个动物的关系,都统统放在一个集合里面

在集合当中,每个动物之间的关系由它们的距离所决定
在这里插入图片描述

在没有路径压缩前(如上图),每个边的距离都是1,我们可以规定 儿子吃父亲,所以2、3、4号点吃1号点,5号点吃2号点,7号点和1号点是同类,因为只有三种动物

在这里插入图片描述
虽然进行了路径压缩,但是可以通过每个节点到根节点的距离判断两个动物的关系


准备阶段:

需要多开辟一个数组存储距离
在这里插入图片描述

接下来是核心重点,需要对并查集当中的 find函数进行修改,需要在路径压缩的时候将数组d当中的距离从到父节点的距离该为到根节点的距离

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
如果超出节点范围就一定是假话


在这里插入图片描述


d[px] = d[y] - d[x];语句的原因如下:
在这里插入图片描述
由于我们写的是 p[px] = py,也就是让px的父亲是py,那么py就是整个合并后集合的根节点

由于需要满足x 和 y 是同类,所以 x到py这个新根节点的距离需要和y到py的距离满足 相等的关系即可。
在这里插入图片描述
所以 d[x] + d[px] = d[y],d[px] = d[y] - d[x]


接下来是 x 吃 y的情况
在这里插入图片描述
写成(d[x] - d[y] - 1) % 3 != 0 而不是 (d[x] - d[y]) % 3 != 1 是因为

(d[x] - d[y] - 1) % 3 != 0包含了两种情况,先看下图
在这里插入图片描述

当 x 到根节点的 距离大于 y 到根节点的距离时,此时满足 x 吃 y 的情况

(d[x] - d[y] - 1) % 3 等于 0,(d[x] - d[y]) % 3 等于 1

在这里插入图片描述

当 x 到根节点的距离小于 y 到根节点的距离时,此时 也满足 x 吃 y 的情况

(d[x] - d[y] - 1) % 3 等于 0,(d[x] - d[y]) % 3 等于 -2,所以两种情况下都是等于0的,只需要写一种,而如果是写成 (d[x] - d[y]) % 3 != 1就需要在加上
(d[x] - d[y]) % 3 != -2 才可以.


d[px] = d[y] + 1 - d[x]的原因如下图所示
在这里插入图片描述
x 吃 y,所以我们设置距离的时候要么 x 的距离(到py根节点的距离)比 y 的长1,要么短2,这里就选择 长1

所以 d[px] 等于 d[y] + 1 - d[x];


最终打印 假话 的数量即可

#include <iostream>using namespace std;const int N = 50010;int p[N], d[N];//存储到父节点的距离,
int n, m;      //由于进行了路径压缩所以也是到根节点的距离int find(int x)
{if (p[x] != x)//如果x不是祖先节点(根节点) {int t = find(p[x]);//先把祖先存起来,因为要用x的爸爸d[x] += d[p[x]];//x到父距离 加上 x的爸爸到爷爷的距离p[x] = t;//x的爸爸变成刚才存的祖先}return p[x];//返回x的祖先
}int main()
{scanf("%d%d", &n, &m);for (int i = 1; i <= n; i++) p[i] = i;//最初的时候每个元素自成一个集合,所以到父节点(或根节点)的距离为0//因为全局变量的数组默认是0,所以不用初始化int res = 0;//假话的数量while (m --)//m句话{int t, x, y;//这里的名字千万不能是d,否则会与数组d重名scanf("%d%d%d", &t, &x, &y);if (x > n || y > n) res++;//如果超出节点范围 就一定是假话else{int px = find(x), py = find(y);//先确定祖先if (t == 1)// 题目说x 和 y 是同类{if (px == py && (d[x] - d[y]) % 3) res++;//如果在一个集合说明这两个节点已经产生某种关系//如果是同类,则距离之差一定3的倍数else if (px != py)//不相等说明第一次提到两点的关系{//所以要把 x 和 y弄成同类动物//1.先合并集合p[px] = py;// x 的祖先的父亲是y的祖先d[px] = d[y] - d[x];}}else if (t == 2) //题目说 x 吃 y;{if (px == py && (d[x] - d[y] - 1) % 3) res++;//不可以写成(d[x] - d[y]) % 3 != 1else if (px != py){p[px] = py;d[px] = d[y] + 1 - d[x]; }}}}cout << res << endl;return 0;
}

这篇关于并查集基础与简单扩展应用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1147064

相关文章

PHP应用中处理限流和API节流的最佳实践

《PHP应用中处理限流和API节流的最佳实践》限流和API节流对于确保Web应用程序的可靠性、安全性和可扩展性至关重要,本文将详细介绍PHP应用中处理限流和API节流的最佳实践,下面就来和小编一起学习... 目录限流的重要性在 php 中实施限流的最佳实践使用集中式存储进行状态管理(如 Redis)采用滑动

深入浅出Spring中的@Autowired自动注入的工作原理及实践应用

《深入浅出Spring中的@Autowired自动注入的工作原理及实践应用》在Spring框架的学习旅程中,@Autowired无疑是一个高频出现却又让初学者头疼的注解,它看似简单,却蕴含着Sprin... 目录深入浅出Spring中的@Autowired:自动注入的奥秘什么是依赖注入?@Autowired

从基础到高级详解Python数值格式化输出的完全指南

《从基础到高级详解Python数值格式化输出的完全指南》在数据分析、金融计算和科学报告领域,数值格式化是提升可读性和专业性的关键技术,本文将深入解析Python中数值格式化输出的相关方法,感兴趣的小伙... 目录引言:数值格式化的核心价值一、基础格式化方法1.1 三种核心格式化方式对比1.2 基础格式化示例

redis-sentinel基础概念及部署流程

《redis-sentinel基础概念及部署流程》RedisSentinel是Redis的高可用解决方案,通过监控主从节点、自动故障转移、通知机制及配置提供,实现集群故障恢复与服务持续可用,核心组件包... 目录一. 引言二. 核心功能三. 核心组件四. 故障转移流程五. 服务部署六. sentinel部署

Python 基于http.server模块实现简单http服务的代码举例

《Python基于http.server模块实现简单http服务的代码举例》Pythonhttp.server模块通过继承BaseHTTPRequestHandler处理HTTP请求,使用Threa... 目录测试环境代码实现相关介绍模块简介类及相关函数简介参考链接测试环境win11专业版python

PostgreSQL简介及实战应用

《PostgreSQL简介及实战应用》PostgreSQL是一种功能强大的开源关系型数据库管理系统,以其稳定性、高性能、扩展性和复杂查询能力在众多项目中得到广泛应用,本文将从基础概念讲起,逐步深入到高... 目录前言1. PostgreSQL基础1.1 PostgreSQL简介1.2 基础语法1.3 数据库

从基础到进阶详解Python条件判断的实用指南

《从基础到进阶详解Python条件判断的实用指南》本文将通过15个实战案例,带你大家掌握条件判断的核心技巧,并从基础语法到高级应用一网打尽,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录​引言:条件判断为何如此重要一、基础语法:三行代码构建决策系统二、多条件分支:elif的魔法三、

Python WebSockets 库从基础到实战使用举例

《PythonWebSockets库从基础到实战使用举例》WebSocket是一种全双工、持久化的网络通信协议,适用于需要低延迟的应用,如实时聊天、股票行情推送、在线协作、多人游戏等,本文给大家介... 目录1. 引言2. 为什么使用 WebSocket?3. 安装 WebSockets 库4. 使用 We

Python中的filter() 函数的工作原理及应用技巧

《Python中的filter()函数的工作原理及应用技巧》Python的filter()函数用于筛选序列元素,返回迭代器,适合函数式编程,相比列表推导式,内存更优,尤其适用于大数据集,结合lamb... 目录前言一、基本概念基本语法二、使用方式1. 使用 lambda 函数2. 使用普通函数3. 使用 N

Python中yield的用法和实际应用示例

《Python中yield的用法和实际应用示例》在Python中,yield关键字主要用于生成器函数(generatorfunctions)中,其目的是使函数能够像迭代器一样工作,即可以被遍历,但不会... 目录python中yield的用法详解一、引言二、yield的基本用法1、yield与生成器2、yi