决策树的实现原理与matlab代码

2024-09-08 02:18

本文主要是介绍决策树的实现原理与matlab代码,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

很久不写博客了,感觉很长一段时间只是一味的看书,疏不知一味地看书、写代码会导致自己的思考以及总结能力变得衰弱。所以,我决定还是继续写博客。废话不多说了,今天想主要记录数据挖掘中的决策树。希望能够将自己的理解写得通俗易懂。

决策树是一种对实例分类的树形结构,树中包含叶子节点与内部节点。内部节点主要是数据中的某一特性,叶子节点是根据数据分析后的最后结果。

先看一组数据:


这组数据的特性包含年龄、工作与否、是否有房、信贷情况以及最终分类结果贷款是否成功,共包含15组样例。

构建数的形状可以有多种,如下:

        

如果随意构建树,那将会导致有的构建树比较庞大,分类时代价比较大,有的构建树比较小,分类代价小。

比如针对是否有房这一列,发现如果样本有房这一列为是,最终分类结果便是可以贷款,而不需要判断其他的特性,便可以获得最终部分分类结果。

因此,构建树需要以最小的代价实现最快的分类。根据何种标准进行判别呢?

在信息论与概率统计中,熵是表示随机变量不确定的量度,设x是一个取有限个值的离散随机变量,其概率分布为:

则随机变量x的熵定义为


熵越大,其不确定性越大。

随机变量x在给定条件y下的条件熵为H(y|x);

信息增益表示得知特征x的信息而使得y类信息的不确定减少的程度。

因此,特征A对训练集D的信息增益g(D,A),定义为集合D的熵H(D)与特征A给定条件下D的条件熵H(D|A)之差,即


对表5.1给定的训练数据集D,计算各特征对其的信息增益,分别以A1,A2,A3,A4表示年龄,有工作,有自己的房子和信贷情况四个特征,则

(1)


(2)



这里D1,D2,D3分别是D中A1取为青年、中年、老年的样本子集,同理,求得其他特征的信息增益:




接下来根据之前的信息增益,对决策树进行生成,这里主要使用ID3算法,C4.5算法与之类似,只是将信息增益衡量转为信息增益比衡量。

主要方法如下:

从根节点开始,对节点计算所有可能的特征的信息增益,选择信息增益最大的特征作为该节点的特征,由该特征的不同取值建立子节点,再对子节点递归调用以上方法,构建决策树。

那么递归何时停止呢?当训练集中所有实例属于同一类时,或者所有特征都选择完毕时,或者信息增益小于某个阈值时,则停止递归,。

举例来说,根据之前对表5.1的熵的计算,由于A3(是否有自己的房子)信息增益最大,所以以A3为决策树的根节点的特征,它将数据集分为两个子集D1(A3取是)和D2(A3取否),由于D1的分类结果都是可以贷款,所以它成为叶节点,对于D2,则从特征A1,A2,A4这三个特征中重新选择特征,计算各个特征的信息增益:


因此选择A2作为子树节点,针对A2是否有工作这个特征,根据样本分类结果发现有工作与无工作各自的样本都属于同一类,因此将有工作与无工作作为子树的叶节点。这样便生成如下的决策树:


决策树生成算法递归的产生决策树,往往对训练数据分类准确,但对未知数据却没那么准确,即会出现过拟合状况。解决这个问题可以通过决策树的剪枝,让决策树简化。本文暂不对决策树的剪枝进行详细描述。

接下来,即对决策树实现的matlab代码:

1、首先,定义决策树的数据结构

tree

{

int pro    //是叶节点(0表示)还是内部节点(1表示)

int value //如果是叶节点,则表示具体的分类结果,如果是内部节点,则表示某个特征

int parentpro //如果该节点有父节点,则该值表示父节点所表示特征的具体属性值

 tree  child[]  //表示该节点的子树数组

}

2、根据训练集数据通过递归形成树:

function tree = maketree(featurelabels,trainfeatures,targets,epsino)
tree=struct('pro',0,'value',-1,'child',[],'parentpro',-1);
[n,m] = size(trainfeatures); %where n represent total numbers of features,m represent total numbers of examples
cn = unique(targets);%different classes
l=length(cn);%totoal numbers of classes
if l==1%if only one class,just use the class to be the lable of the tree and return
    tree.pro=0;%reprensent leaf
    tree.value = cn;
    tree.child=[];
    return
end
if n==0% if feature number equals 0
    H = hist(targets, length(cn)); %histogram of class
   [ma, largest] = max(H); %ma is the number of class who has largest number,largest is the posion in cn
   tree.pro=0;
   tree.value=cn(largest);
   tree.child=[];
   return
end


pnode = zeros(1,length(cn));
%calculate info gain
for i=1:length(cn)
    pnode(i)=length(find(targets==cn(i)))/length(targets);
end
H=-sum(pnode.*log(pnode)/log(2));
maxium=-1;
maxi=-1;
g=zeros(1,n);
for i=1:n
    fn=unique(trainfeatures(i,:));%one feature has fn properties
    lfn=length(fn);
    gf=zeros(1,lfn);
    fprintf('feature numbers:%d\n',lfn);
    for k=1:lfn
        onefeature=find(fn(k)==trainfeatures(i,:));%to each property in feature,,calucute the number of this property
        for j=1:length(cn)
            oneinonefeature=find(cn(j)==targets(:,onefeature));
            ratiofeature=length(oneinonefeature)/length(onefeature);
            fprintf('feature %d, property %d, rationfeature:%f\n',i, fn(k),ratiofeature);
            if(ratiofeature~=0)
                gf(k)=gf(k)+(-ratiofeature*log(ratiofeature)/log(2));
            end
        end  
        ratio=length(onefeature)/m;
        gf(k)=gf(k)*ratio;
    end
    g(i)=H-sum(gf);
    fprintf('%f\n',g(i));
    if g(i)>maxium
        maxium=g(i);
        maxi=i;
    end
end


if maxium<epsino
    H = hist(targets, length(cn)); %histogram of class
   [ma, largest] = max(H); %ma is the number of class who has largest number,largest is the posion in cn
   tree.pro=0;
   tree.value=cn(largest);
   tree.child=[];
   return
end


tree.pro=1;%1 represent it's a inner node,0 represents it's a leaf
tv=featurelabels(maxi);
tree.value=tv;
tree.child=[];
featurelabels(maxi)=[];


%split data according feature
[data,target,splitarr]=splitData(trainfeatures,targets,maxi);
%tree.child=zeros(1,length(data));
%build child tree;
fprintf('split data into %d\n',length(data));
for i=1:length(data)
   disp(data(i));
   fprintf('\n');
   disp(target(i));
   fprintf('\n');
end
fprintf('\n');


for i=1:size(data,1)
    result = zeros(size(data{i}));
    result=data{i};
    temptree=maketree(featurelabels,result,target{i},0);
    tree.pro=1;%1 represent it's a inner node,0 represents it's a leaf
    tree.value=tv;
    tree.child(i)=temptree;
    tree.child(i).parentpro = splitarr(i);
    fprintf('temp tree\n');
    disp(tree.child(1));
    fprintf('\n');
end
disp(tree);
fprintf("now root tree,tree has %d childs\n",size(tree.child,2));
fprintf('\n');
for i=1:size(data,1)
    disp(tree.child(i));
    fprintf('\n');
end
fprintf('one iteration ends\n');
end

3、根据某个特征,将数据集分成若干子数据集

function [data,target,splitarr]=splitData(oldData,oldtarget,splitindex)
fn=unique(oldData(splitindex,:));
data=cell(length(fn),1);

target=cell(length(fn),1);
splitarr=zeros(size(fn));
for i=1:length(fn)
    fcolumn=find(oldData(splitindex,:)==fn(i));
    data(i) =oldData(:,fcolumn);
    target(i) = oldtarget(:,fcolumn);
    data{i}(splitindex,:)=[];
    splitarr(i)=fn(i);
end    
end

4、打印决策树

function printTree(tree)
if tree.pro==0
    fprintf('(%d)',tree.value);
    if tree.parentpro~=-1
        fprintf('its parent feature value:%d\n',tree.parentpro);
    end
    return
end
fprintf('[%d]\n',tree.value);
if tree.parentpro~=-1
    fprintf('its parent feature value:%d\n',tree.parentpro);
end
fprintf('its subtree:\n');
childset = tree.child;
for i=1:size(childset,2)
    printTree(childset(i));
end
fprintf('\n');
fprintf('its subtree end\n');
end

5、对某个具体的样本进行结果预测

function result=classify(data, tree)
while tree.pro==1
    childset=tree.child;
    v=tree.value;
    for i=1:size(childset,2)
        child = childset(i);
        if child.parentpro==data(v);
            tree=child;
            break;
        end
    end
end
result=tree.value;
end

接下来对数据用代码进行测试

clear all; close all; clc
featurelabels=[1,2,3,4];
trainfeatures=[1,1,1,1,1,2,2,2,2,2,3,3,3,3,3;%each row of trainfeature represent one feature and each column reprensent each examples 
                0,0,1,1,0,0,0,1,0,0,0,0,1,1,0;
                0,0,0,1,0,0,0,1,1,1,1,1,0,0,0;
                1,2,2,1,1,1,2,2,3,3,3,2,2,3,1
                ];
targets=[0,0,1,1,0,0,0,1,1,1,1,1,1,1,0];%represent classification results according to trainfeatures
tree=maketree(featurelabels,trainfeatures,targets,0);
printTree(tree);
data=[2,0,0,1];
result=classify(data,tree);
fprintf('The result is %d\n',result);

关于决策树的原理构建大概就结束了,后期可以继续完成对决策树的剪枝或者将决策树由多叉树转化为二叉树,让决策树更加高效矮小。源码地址:https://github.com/summersunshine1/datamining。






这篇关于决策树的实现原理与matlab代码的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1146832

相关文章

C#实现系统信息监控与获取功能

《C#实现系统信息监控与获取功能》在C#开发的众多应用场景中,获取系统信息以及监控用户操作有着广泛的用途,比如在系统性能优化工具中,需要实时读取CPU、GPU资源信息,本文将详细介绍如何使用C#来实现... 目录前言一、C# 监控键盘1. 原理与实现思路2. 代码实现二、读取 CPU、GPU 资源信息1.

SpringBoot实现动态插拔的AOP的完整案例

《SpringBoot实现动态插拔的AOP的完整案例》在现代软件开发中,面向切面编程(AOP)是一种非常重要的技术,能够有效实现日志记录、安全控制、性能监控等横切关注点的分离,在传统的AOP实现中,切... 目录引言一、AOP 概述1.1 什么是 AOP1.2 AOP 的典型应用场景1.3 为什么需要动态插

Oracle查询优化之高效实现仅查询前10条记录的方法与实践

《Oracle查询优化之高效实现仅查询前10条记录的方法与实践》:本文主要介绍Oracle查询优化之高效实现仅查询前10条记录的相关资料,包括使用ROWNUM、ROW_NUMBER()函数、FET... 目录1. 使用 ROWNUM 查询2. 使用 ROW_NUMBER() 函数3. 使用 FETCH FI

Python脚本实现自动删除C盘临时文件夹

《Python脚本实现自动删除C盘临时文件夹》在日常使用电脑的过程中,临时文件夹往往会积累大量的无用数据,占用宝贵的磁盘空间,下面我们就来看看Python如何通过脚本实现自动删除C盘临时文件夹吧... 目录一、准备工作二、python脚本编写三、脚本解析四、运行脚本五、案例演示六、注意事项七、总结在日常使用

Java实现Excel与HTML互转

《Java实现Excel与HTML互转》Excel是一种电子表格格式,而HTM则是一种用于创建网页的标记语言,虽然两者在用途上存在差异,但有时我们需要将数据从一种格式转换为另一种格式,下面我们就来看看... Excel是一种电子表格格式,广泛用于数据处理和分析,而HTM则是一种用于创建网页的标记语言。虽然两

Java中Springboot集成Kafka实现消息发送和接收功能

《Java中Springboot集成Kafka实现消息发送和接收功能》Kafka是一个高吞吐量的分布式发布-订阅消息系统,主要用于处理大规模数据流,它由生产者、消费者、主题、分区和代理等组件构成,Ka... 目录一、Kafka 简介二、Kafka 功能三、POM依赖四、配置文件五、生产者六、消费者一、Kaf

使用Python实现在Word中添加或删除超链接

《使用Python实现在Word中添加或删除超链接》在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能,本文将为大家介绍一下Python如何实现在Word中添加或... 在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能。通过添加超

windos server2022里的DFS配置的实现

《windosserver2022里的DFS配置的实现》DFS是WindowsServer操作系统提供的一种功能,用于在多台服务器上集中管理共享文件夹和文件的分布式存储解决方案,本文就来介绍一下wi... 目录什么是DFS?优势:应用场景:DFS配置步骤什么是DFS?DFS指的是分布式文件系统(Distr

NFS实现多服务器文件的共享的方法步骤

《NFS实现多服务器文件的共享的方法步骤》NFS允许网络中的计算机之间共享资源,客户端可以透明地读写远端NFS服务器上的文件,本文就来介绍一下NFS实现多服务器文件的共享的方法步骤,感兴趣的可以了解一... 目录一、简介二、部署1、准备1、服务端和客户端:安装nfs-utils2、服务端:创建共享目录3、服

C#使用yield关键字实现提升迭代性能与效率

《C#使用yield关键字实现提升迭代性能与效率》yield关键字在C#中简化了数据迭代的方式,实现了按需生成数据,自动维护迭代状态,本文主要来聊聊如何使用yield关键字实现提升迭代性能与效率,感兴... 目录前言传统迭代和yield迭代方式对比yield延迟加载按需获取数据yield break显式示迭