分布式事务 全面解析

2024-09-08 01:08
文章标签 全面 解析 分布式 事务

本文主要是介绍分布式事务 全面解析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1 面试题

分布式事务了解吗?你们如何解决分布式事务问题的?

2 考点分析

只要聊到做了分布式系统,必问分布式事务,若你对分布式事务一无所知的话,确实很坑,起码得知道有哪些方案,一般怎么来做,每个方案的优缺点是什么。

现在面试,分布式系统成了标配,而分布式系统带来的分布式事务也成了标配.

你做系统肯定要用事务,那你用事务的话,分布式系统之后肯定要用分布式事务.

先不说你搞过没有,起码你得明白有哪几种方案,每种方案可能有啥坑?比如TCC方案的网络问题、XA方案的一致性问题

  • 单块系统里的事务

 

  • 分布式系统里的事务

 

3 XA方案也叫做两阶段提交事务方案.

举个例子,比如公司经常团建,然后一般会有个主席(就是负责组织团建的那个人)。

tb,team building,团建
  • 第一个阶段,一般tb主席会提前问团队里的每个人,说,大家伙,下周六我们去滑雪+烧烤,去吗? - 这个时候tb主席开始等待每个人的回答,如果所有人都说ok,那么就可以决定一起去这次tb - 如果这个阶段里,任何一个人回答说,我有事不去了,那么tb主席就会取消这次活动
  • 第二个阶段,那下周六大家就一起去滑雪+烧烤了

这就是所谓的XA事务,两阶段提交

有一个事务管理器,负责协调多个数据库(资源管理器)的事务,事务管理器先问各个数据库你准备好了吗?

  • 如果每个数据库都回复ok,那么就正式提交事务,在各个数据库上执行操作
  • 任何一个数据库回答不ok,那么就回滚事务。

这种分布式事务方案,比较适合单块应用中,跨多个库的分布式事务,而且因为严重依赖于数据库层面来搞定复杂的事务,效率很低,绝对不适合高并发场景

如果要玩,那么基于Spring + JTA就可以搞定,自己随便搜个demo看看~

这个方案,很少用,一般某个系统内部如果出现跨多个库的操作,是不合规的!

现在的微服务,一个大的系统分成几十甚至上百个服务。一般来说,我们的规约,是要求每个服务只能操作自己对应的一个数据库!

如果你要操作别的服务对应的库,不允许直连别的服务的库,违反微服务架构的规范

你随便交叉访问,几百个服务的话,全体乱套,这样的一套服务是没法管理的,会经常数据被别人改错,自己的库被别人写挂!

如果你要操作别人的服务的库,你必须通过调用别的服务的接口实现,绝对不允许你交叉访问别人的数据库!

  • 两阶段提交方案示意图

 

4 TCC方案

全称:Try、Confirm、Cancel

4.1 三个阶段

4.1.1 Try

对各个服务的资源做检测,对资源进行锁定或者预留

4.1.2 Confirm

在各个服务中执行实际的操作

4.1.3 Cancel

如果任何一个服务的业务方法执行出错,那么这里就需要进行补偿,即执行已操作成功的业务逻辑的回滚操作

4.2 跨银行转账案例

涉及到两个银行的分布式事务,如果用TCC方案来实现,思路是这样的:

  • Try阶段 先把两个银行账户中的资金给它冻结住,不让操作了
  • Confirm阶段 执行实际的转账操作,A银行账户的资金扣减,B银行账户的资金增加
  • Cancel阶段 如果任何一个银行的操作执行失败,那么就需要回滚进行补偿 比如A银行账户如果已经扣减了,但是B银行账户资金增加失败了,那么就得把A银行账户资金给加回去

该方案说实话几乎很少使用,但也有使用场景.

因为这个事务的回滚实际上严重依赖于你自己写代码来回滚和补偿了,会造成补偿代码巨大,非常恶心!

比如说我们,一般来说和钱相关的支付、交易等相关的场景,我们会用TCC,严格严格保证分布式事务要么全部成功,要么全部自动回滚,严格保证资金的正确性!

4.3 适用场景

除非你是真的一致性要求太高,是系统中核心之核心的场景!

常见的就是资金类的场景,那可以用TCC方案,自己编写大量的业务逻辑,自己判断一个事务中的各个环节是否ok,不ok就执行补偿/回滚代码

而且最好是你的各个业务执行的时间都比较短

但是说实话,一般尽量别这么搞,自己手写回滚逻辑,或者是补偿逻辑,实在太恶心了,业务代码也很难维护

  • TCC方案

 

5 本地消息表

ebay搞出来的这么一套思想

5.1 简介

  • A系统在本地一个事务里操作的同时,插入一条数据到消息表
  • 接着A系统将这个消息发送到MQ
  • B系统接收到消息后,在一个事务里,往自己本地消息表里插入一条数据,同时执行其他的业务操作,如果这个消息已经被处理过了,那么此时这个事务会回滚,这样保证不会重复处理消息
  • B系统执行成功后,就会更新自己本地消息表的状态以及A系统消息表的状态
  • 如果B系统处理失败,那么就不会更新消息表状态,那么此时A系统会定时扫描自己的消息表,如果有未处理的消息,会再次发送到MQ中去,让B再处理

5.2 优点

这个方案保证了最终一致性

哪怕B事务失败了,但是A会不断重发消息,直到B那边成功为止

5.3 缺陷

最大的问题就在于严重依赖于数据库的消息表来管理事务,这个会导致高并发场景无力,难以扩展呢,一般确实很少用

  • 本地消息表方案

 

6 可靠消息最终一致性方案

干脆不用本地的消息表了,直接基于MQ来实现事务。比如阿里的RocketMQ就支持消息事务!

6.1 简介

  • A系统先发送一个prepared消息到MQ,如果这个prepared消息发送失败,那么就直接取消操作,不执行了
  • 如果这个消息发送成功过了,那么接着执行本地事务,如果成功就告诉MQ发送确认消息,如果失败就告诉MQ回滚消息
  • 如果发送了确认消息,那么此时B系统会接收到确认消息,然后执行本地的事务
  • MQ会自动定时轮询所有prepared消息回调你的接口,问你这个消息是不是本地事务处理失败了,所有没发送确认的消息,是继续重试还是回滚? 这里你就可以查下数据库看之前本地事务是否执行,如果回滚了,那么这里也回滚吧。这个就是避免可能本地事务执行成功了,别确认消息发送失败了。
  • 如果系统B的事务失败了咋办? 重试咯,自动不断重试直到成功,如果实在是不行,要么就是针对重要的资金类业务进行回滚,比如B系统本地回滚后,想办法通知系统A也回滚;或者是发送报警由人工来手工回滚和补偿

这个还是比较合适的,目前国内互联网公司大都是这么玩的,要不你举用RocketMQ支持的,要不你就自己基于类似ActiveMQ?RabbitMQ?自己封装一套类似的逻辑出来,总之思路就是这样子的

  • 可靠消息最终一致性方案

 

 

7 最大努力通知方案

7.1 简介

  • 系统A本地事务执行完后,发送一个消息到MQ
  • 有一专门消费MQ的最大努力通知服务,会消费MQ,然后写入数据库中记录下来,亦可是放入内存队列,接着调用系统B的接口
  • 若系统B执行成功就ok;若系统B执行失败,那么最大努力通知服务就定时尝试重新调用系统B,反复N次,最后还是不行才放弃
  • 最大努力通知方案示意图

 

8 总结

你们公司是如何处理分布式事务的呢?欢迎评论交流!

讲真的,该突破面试教程没法带着大家实战,因为定位不是这个.

如果你真的被问到,你可以这么说,我们某某特别严格的场景,用的是TCC来保证强一致性;然后其他的一些场景基于了阿里的RocketMQ来实现了分布式事务~

你找一个严格资金要求绝对不能错的场景,你可以说你是用的TCC方案

如果是一般的分布式事务场景,订单插入之后要调用库存服务更新库存,库存数据没有资金那么的敏感,可以用可靠消息最终一致性方案

Rocketmq 3.2.6之前的版本,是可以按照上面的思路来的,但是之后接口做了一些改变,不再赘述,欢迎关注后续笔者的RocketMQ实战系列

当然如果你愿意,你可以参考可靠消息最终一致性方案来自己实现一套分布式事务,比如基于RabbitMQ来玩儿。

你其实用任何一个分布式事务的这么一个方案,都会导致你那块儿代码会复杂10倍。很多情况下,系统A调用系统B、系统C、系统D,我们可能根本就不做分布式事务。如果调用报错会打印异常日志。

每个月也就那么几个bug,很多bug是功能性的,体验性的,真的是涉及到数据层面的一些bug,一个月就几个,两三个?如果你为了确保系统自动保证数据100%不能错,上了几十个分布式事务,代码太复杂;性能太差,系统吞吐量、性能大幅度下跌。

99%的分布式接口调用,不要做分布式事务,直接就是监控(发邮件、发短信)、记录日志(一旦出错,完整的日志)、事后快速的定位、排查和出解决方案、修复数据。

每个月,每隔几个月,都会对少量的因为代码bug,导致出错的数据,进行人工的修复数据,自己临时动手写个程序,可能要补一些数据,可能要删除一些数据,可能要修改一些字段的值。

比你做50个分布式事务,成本要来的低上百倍,低几十倍

trade off,权衡,要用分布式事务的时候,一定是有成本,代码会很复杂,开发很长时间,性能和吞吐量下跌,系统更加复杂更加脆弱反而更加容易出bug;好处,如果做好了,TCC、可靠消息最终一致性方案,一定可以100%保证你那快数据不会出错。

1%,0.1%,0.01%的业务,资金、交易、订单,我们会用分布式事务方案来保证,会员积分、优惠券、商品信息,其实不要这么搞了

这篇关于分布式事务 全面解析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1146681

相关文章

使用Python实现批量访问URL并解析XML响应功能

《使用Python实现批量访问URL并解析XML响应功能》在现代Web开发和数据抓取中,批量访问URL并解析响应内容是一个常见的需求,本文将详细介绍如何使用Python实现批量访问URL并解析XML响... 目录引言1. 背景与需求2. 工具方法实现2.1 单URL访问与解析代码实现代码说明2.2 示例调用

SSID究竟是什么? WiFi网络名称及工作方式解析

《SSID究竟是什么?WiFi网络名称及工作方式解析》SID可以看作是无线网络的名称,类似于有线网络中的网络名称或者路由器的名称,在无线网络中,设备通过SSID来识别和连接到特定的无线网络... 当提到 Wi-Fi 网络时,就避不开「SSID」这个术语。简单来说,SSID 就是 Wi-Fi 网络的名称。比如

SpringCloud配置动态更新原理解析

《SpringCloud配置动态更新原理解析》在微服务架构的浩瀚星海中,服务配置的动态更新如同魔法一般,能够让应用在不重启的情况下,实时响应配置的变更,SpringCloud作为微服务架构中的佼佼者,... 目录一、SpringBoot、Cloud配置的读取二、SpringCloud配置动态刷新三、更新@R

使用Java解析JSON数据并提取特定字段的实现步骤(以提取mailNo为例)

《使用Java解析JSON数据并提取特定字段的实现步骤(以提取mailNo为例)》在现代软件开发中,处理JSON数据是一项非常常见的任务,无论是从API接口获取数据,还是将数据存储为JSON格式,解析... 目录1. 背景介绍1.1 jsON简介1.2 实际案例2. 准备工作2.1 环境搭建2.1.1 添加

java如何分布式锁实现和选型

《java如何分布式锁实现和选型》文章介绍了分布式锁的重要性以及在分布式系统中常见的问题和需求,它详细阐述了如何使用分布式锁来确保数据的一致性和系统的高可用性,文章还提供了基于数据库、Redis和Zo... 目录引言:分布式锁的重要性与分布式系统中的常见问题和需求分布式锁的重要性分布式系统中常见的问题和需求

Redis事务与数据持久化方式

《Redis事务与数据持久化方式》该文档主要介绍了Redis事务和持久化机制,事务通过将多个命令打包执行,而持久化则通过快照(RDB)和追加式文件(AOF)两种方式将内存数据保存到磁盘,以防止数据丢失... 目录一、Redis 事务1.1 事务本质1.2 数据库事务与redis事务1.2.1 数据库事务1.

Golang使用etcd构建分布式锁的示例分享

《Golang使用etcd构建分布式锁的示例分享》在本教程中,我们将学习如何使用Go和etcd构建分布式锁系统,分布式锁系统对于管理对分布式系统中共享资源的并发访问至关重要,它有助于维护一致性,防止竞... 目录引言环境准备新建Go项目实现加锁和解锁功能测试分布式锁重构实现失败重试总结引言我们将使用Go作

Redis分布式锁使用及说明

《Redis分布式锁使用及说明》本文总结了Redis和Zookeeper在高可用性和高一致性场景下的应用,并详细介绍了Redis的分布式锁实现方式,包括使用Lua脚本和续期机制,最后,提到了RedLo... 目录Redis分布式锁加锁方式怎么会解错锁?举个小案例吧解锁方式续期总结Redis分布式锁如果追求

在C#中合并和解析相对路径方式

《在C#中合并和解析相对路径方式》Path类提供了几个用于操作文件路径的静态方法,其中包括Combine方法和GetFullPath方法,Combine方法将两个路径合并在一起,但不会解析包含相对元素... 目录C#合并和解析相对路径System.IO.Path类幸运的是总结C#合并和解析相对路径对于 C

SpringBoot嵌套事务详解及失效解决方案

《SpringBoot嵌套事务详解及失效解决方案》在复杂的业务场景中,嵌套事务可以帮助我们更加精细地控制数据的一致性,然而,在SpringBoot中,如果嵌套事务的配置不当,可能会导致事务不生效的问题... 目录什么是嵌套事务?嵌套事务失效的原因核心问题:嵌套事务的解决方案方案一:将嵌套事务方法提取到独立类