AIGC大模型智能抠图(清除背景):Sanster/IOPaint,python(2)

2024-09-08 00:12

本文主要是介绍AIGC大模型智能抠图(清除背景):Sanster/IOPaint,python(2),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

AIGC大模型智能抠图(清除背景):Sanster/IOPaint,python(2)

 

在文章(1)的基础上,尝试用大模型扣除图中的某些主要景物。

1、首先,安装插件:

pip install rembg

 

2、第1步安装成功,启动webui,注意,这里要启用清除背景/抠图的插件 --enable-remove-bg :

iopaint start --model=lama --device=cpu --port=8080 --model-dir=D:/code/python/Sanster/IOPaint --enable-remove-bg

 

3、以上成功后,打开 127.0.0.1:8080,导入一张图片,这张原图为

49c8661391af4614b4e54db0b7dd8eee.jpeg

 

导入,开始大模型抠图:

7cead4e36ddc4732a2b8392c8df30349.png

 

抠出图中主要景物(拿破仑):

97679399fb8a4411989e5378d9ba2f98.png

 

成功后,下载结果图:

2f1aa086085c4755aecdeba6de2801e3.png

 

 

最终AIGC大模型抠出的图为:

5c2f8ae96dd54b1c8c7cc2ff111d8dc6.jpeg

 

结果还不错。

 

 

 

b2fd91bb8f6d48669f9a9b45ef3de131.png

 

 

 

AIGC大模型智能擦除:Sanster/IOPaint,python(1)-CSDN博客文章浏览阅读521次,点赞3次,收藏9次。webui-user.bat启动stable-diffusion-webui报错:RuntimeError: Torch is not able to use GPU,AIGC,Python。webui-user.bat启动stable-diffusion-webui报错:RuntimeError: Torch is not able to use GPU,AIGC,Python-CSDN博客。2、设置 - 系统 - 可选功能 - 更多Windows功能 - 启用或关闭Windows功能。https://blog.csdn.net/zhangphil/article/details/141874543

Windows安装docker,启动ollama运行open-webui使用AIGC大模型写周杰伦歌词-CSDN博客文章浏览阅读554次,点赞9次,收藏7次。webui-user.bat启动stable-diffusion-webui报错:RuntimeError: Torch is not able to use GPU,AIGC,Python。webui-user.bat启动stable-diffusion-webui报错:RuntimeError: Torch is not able to use GPU,AIGC,Python-CSDN博客。2、设置 - 系统 - 可选功能 - 更多Windows功能 - 启用或关闭Windows功能。https://blog.csdn.net/zhangphil/article/details/141829276

 

这篇关于AIGC大模型智能抠图(清除背景):Sanster/IOPaint,python(2)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1146564

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

python: 多模块(.py)中全局变量的导入

文章目录 global关键字可变类型和不可变类型数据的内存地址单模块(单个py文件)的全局变量示例总结 多模块(多个py文件)的全局变量from x import x导入全局变量示例 import x导入全局变量示例 总结 global关键字 global 的作用范围是模块(.py)级别: 当你在一个模块(文件)中使用 global 声明变量时,这个变量只在该模块的全局命名空

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

嵌入式QT开发:构建高效智能的嵌入式系统

摘要: 本文深入探讨了嵌入式 QT 相关的各个方面。从 QT 框架的基础架构和核心概念出发,详细阐述了其在嵌入式环境中的优势与特点。文中分析了嵌入式 QT 的开发环境搭建过程,包括交叉编译工具链的配置等关键步骤。进一步探讨了嵌入式 QT 的界面设计与开发,涵盖了从基本控件的使用到复杂界面布局的构建。同时也深入研究了信号与槽机制在嵌入式系统中的应用,以及嵌入式 QT 与硬件设备的交互,包括输入输出设

让树莓派智能语音助手实现定时提醒功能

最初的时候是想直接在rasa 的chatbot上实现,因为rasa本身是带有remindschedule模块的。不过经过一番折腾后,忽然发现,chatbot上实现的定时,语音助手不一定会有响应。因为,我目前语音助手的代码设置了长时间无应答会结束对话,这样一来,chatbot定时提醒的触发就不会被语音助手获悉。那怎么让语音助手也具有定时提醒功能呢? 我最后选择的方法是用threading.Time

【Python编程】Linux创建虚拟环境并配置与notebook相连接

1.创建 使用 venv 创建虚拟环境。例如,在当前目录下创建一个名为 myenv 的虚拟环境: python3 -m venv myenv 2.激活 激活虚拟环境使其成为当前终端会话的活动环境。运行: source myenv/bin/activate 3.与notebook连接 在虚拟环境中,使用 pip 安装 Jupyter 和 ipykernel: pip instal

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验

图神经网络模型介绍(1)

我们将图神经网络分为基于谱域的模型和基于空域的模型,并按照发展顺序详解每个类别中的重要模型。 1.1基于谱域的图神经网络         谱域上的图卷积在图学习迈向深度学习的发展历程中起到了关键的作用。本节主要介绍三个具有代表性的谱域图神经网络:谱图卷积网络、切比雪夫网络和图卷积网络。 (1)谱图卷积网络 卷积定理:函数卷积的傅里叶变换是函数傅里叶变换的乘积,即F{f*g}