Redis应用之Feed流关注推送

2024-09-08 00:12
文章标签 应用 redis 推送 关注 feed

本文主要是介绍Redis应用之Feed流关注推送,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

我的博客大纲

我的后端学习大纲

-------------------------------------------------------------------------------------------------------------------------------------------------# 3.好友关注:

3.1.关注和取关:

a.接口说明:

在这里插入图片描述
在这里插入图片描述

b.编码实现:

  • 1.Controller层接口:
@RestController
@RequestMapping("/follow")
public class FollowController {@Resourceprivate IFollowService followService;/*** 关注用户* @param followUserId 关注用户的id* @param isFollow 是否已关注* @return*/@PutMapping("/{id}/{isFollow}")public Result follow(@PathVariable("id") Long followUserId, @PathVariable Boolean isFollow){return followService.follow(followUserId, isFollow);}/*** 是否关注用户* @param followUserId 关注用户的id* @return*/@GetMapping("/or/not/{id}")public Result isFollow(@PathVariable("id") Long followUserId){return followService.isFollow(followUserId);}
}
  • 2.Service层代码:
@Service
public class FollowServiceImpl extends ServiceImpl<FollowMapper, Follow> implements IFollowService {/*** 关注用户** @param followUserId 关注用户的id* @param isFollow     是否已关注* @return*/@Overridepublic Result follow(Long followUserId, Boolean isFollow) {Long userId = ThreadLocalUtls.getUser().getId();if (isFollow) {// 用户为关注,则关注Follow follow = new Follow();follow.setUserId(userId);follow.setFollowUserId(followUserId);this.save(follow);} else {// 用户已关注,删除关注信息this.remove(new LambdaQueryWrapper<Follow>().eq(Follow::getUserId, userId).eq(Follow::getFollowUserId, followUserId));}return Result.ok();}/*** 是否关注用户** @param followUserId 关注用户的id* @return*/@Overridepublic Result isFollow(Long followUserId) {Long userId = ThreadLocalUtls.getUser().getId();int count = this.count(new LambdaQueryWrapper<Follow>().eq(Follow::getUserId, userId).eq(Follow::getFollowUserId, followUserId));return Result.ok(count > 0);}
}
  • 3.页面上的关注测试:
    在这里插入图片描述

3.2.共同关注:

a.接口说明:

在这里插入图片描述
在这里插入图片描述

b.编码实现:

  • 1.我们想要查询出两个用户的共同关注对象,这就需要使用求交集,对于求交集,我们可以使用Set集合
@Service
public class FollowServiceImpl extends ServiceImpl<FollowMapper, Follow> implements IFollowService {@Resourceprivate StringRedisTemplate stringRedisTemplate;@Resourceprivate IUserService userService;/*** 关注用户** @param followUserId 关注用户的id* @param isFollow     是否已关注* @return*/@Overridepublic Result follow(Long followUserId, Boolean isFollow) {Long userId = ThreadLocalUtls.getUser().getId();String key = FOLLOW_KEY + userId;if (isFollow) {// 用户为关注,则关注Follow follow = new Follow();follow.setUserId(userId);follow.setFollowUserId(followUserId);boolean isSuccess = this.save(follow);if (isSuccess) {// 用户关注信息保存成功,把关注的用户id放入Redis的Set集合中,stringRedisTemplate.opsForSet().add(key, followUserId.toString());}} else {// 用户已关注,删除关注信息boolean isSuccess = this.remove(new LambdaQueryWrapper<Follow>().eq(Follow::getUserId, userId).eq(Follow::getFollowUserId, followUserId));if (isSuccess) {stringRedisTemplate.opsForSet().remove(key, followUserId.toString());}}return Result.ok();}/*** 是否关注用户** @param followUserId 关注用户的id* @return*/@Overridepublic Result isFollow(Long followUserId) {Long userId = ThreadLocalUtls.getUser().getId();int count = this.count(new LambdaQueryWrapper<Follow>().eq(Follow::getUserId, userId).eq(Follow::getFollowUserId, followUserId));return Result.ok(count > 0);}/*** 查询共同关注** @param id* @return*/@Overridepublic Result followCommons(Long id) {Long userId = ThreadLocalUtls.getUser().getId();String key1 = FOLLOW_KEY + userId;String key2 = FOLLOW_KEY + id;// 查询当前用户与目标用户的共同关注对象Set<String> intersect = stringRedisTemplate.opsForSet().intersect(key1, key2);if (Objects.isNull(intersect) || intersect.isEmpty()) {return Result.ok(Collections.emptyList());}List<Long> ids = intersect.stream().map(Long::valueOf).collect(Collectors.toList());// 查询共同关注的用户信息List<UserDTO> userDTOList = userService.listByIds(ids).stream().map(user -> BeanUtil.copyProperties(user, UserDTO.class)).collect(Collectors.toList());return Result.ok(userDTOList);}
}

在这里插入图片描述
在这里插入图片描述


3.3.Feed流关注推送

a.什么是Feed流?

  • 1.关注推送也叫做Feed流,直译为投喂。为用户持续的提供“沉浸式”的体验,通过无限下拉刷新获取新的信息。
  • 2.Feed流是一种基于用户个性化需求和兴趣的信息流推送方式,常见于社交媒体、新闻应用、音乐应用等互联网平台。
  • 3.Feed流通过算法和用户行为数据分析,动态地将用户感兴趣的内容以流式方式呈现在用户的界面上。
    在这里插入图片描述

b.Feed流产品有两种常见模式:

b1.时间排序(Timeline):
  • 1.不做内容筛选,简单的按照内容发布时间排序,常用于好友或关注。例如朋友圈
    • 优点:信息全面,不会有缺失。并且实现也相对简单
    • 缺点:信息噪音较多,用户不一定感兴趣,内容获取效率低
b2.智能排序:
  • 1.利用智能算法屏蔽掉违规的、用户不感兴趣的内容。推送用户感兴趣信息来吸引用户
    • 优点:投喂用户感兴趣信息,用户粘度很高,容易沉迷
    • 缺点:如果算法不精准,可能起到反作用

c.时间排序(Timeline)的实现方式:

  • 1.本例中的个人页面,是基于关注的好友来做Feed流,因此采用Timeline的模式。该模式的实现方案有三种:
    在这里插入图片描述
c1.拉模式:

1.拉模式概念:

  • 1.拉模式也叫做读扩散。
  • 2.在拉模式中,终端用户或应用程序主动发送请求来获取最新的数据流。它是一种按需获取数据的方式,用户可以在需要时发出请求来获取新数据。
  • 3.在Feed流中,数据提供方将数据发布到实时数据源中,而终端用户或应用程序通过订阅或请求来获取新数据。

2.拉模式优点:

  • 1.节约空间,可以减少不必要的数据传输,只需要获取自己感兴趣的数据,因为赵六在读信息时,并没有重复读取,而且读取完之后可以把他的收件箱进行清楚。

3.拉模式缺点:

  • 1.延迟较高,当用户读取数据时才去关注的人里边去读取数据,假设用户关注了大量的用户,那么此时就会拉取海量的内容,对服务器压力巨大
    在这里插入图片描述
c2.推模式:

1.推模式概念:

  • 1.推模式也叫做写扩散。在推模式中,数据提供方主动将最新的数据推送给终端用户或应用程序。数据提供方会实时地将数据推送到终端用户或应用程序,而无需等待请求。

2.推模式优点:

  • 1.优点:数据延迟低,不用临时拉取

2.推模式缺点:

  • 1.内存耗费大,假设一个大V写信息,很多人关注他, 就会写很多份数据到粉丝那边去
    在这里插入图片描述
c3.推拉结合:

定义:

  • 1.也叫做读写混合,兼具推和拉两种模式的优点。
  • 2.在推拉结合模式中,数据提供方会主动将最新的数据推送给终端用户或应用程序,同时也支持用户通过拉取的方式来获取数据。这样可以实现实时的数据更新,并且用户也具有按需获取数据的能力。
  • 3.推拉模式是一个折中的方案,站在发件人这一段:
    • 如果是个普通的人,那么我们采用写扩散的方式,直接把数据写入到他的粉丝中去,因为普通的人他的粉丝关注量比较小,所以这样做没有压力
    • 如果是大V,那么他是直接将数据先写入到一份到发件箱里边去,然后再直接写一份到活跃粉丝收件箱里边去
  • 4.现在站在收件人这端来看:
    • 如果是活跃粉丝,那么大V和普通的人发的都会直接写入到自己收件箱里边来
    • 而如果是普通的粉丝,由于他们上线不是很频繁,所以等他们上线时,再从发件箱里边去拉信息
      在这里插入图片描述

d.本案例模式选择:

在这里插入图片描述

  • 1.当前项目用户量比较小,所以这里我们选择使用推模式,延迟低、内存占比也没那么大
  • 2.由于我们需要实现分页查询功能,这里我们可以选择 list 或者 SortedSet,而不能使用Set,因为Set是无序的, list是有索引的,SortedSet 是有序的,那么我们该如何选择呢?
  • 3.如果我们选择 list 会存在索引漂移现象(这个在Vue中也存在),从而导致读取重复数据,所以我们不能选择使用 list
    在这里插入图片描述
  • 4.我们可以选择使用滚动分页,我们使用SortedSet,如果使用排名和使用角标是一样的,但是SortedSet可以按照Score排序(Score默认按照时间戳生成,所以是固定的),每次我们可以选择比之前Score较小的,这样就能够实现滚动排序,从而防止出现问题
    在这里插入图片描述

e.编码实现:

  • 1.代码实现:在BlogServiceImpl中修改原有的保存探店笔记的方法:
    /*** 保存探店笔记** @param blog* @return*/@Overridepublic Result saveBlog(Blog blog) {Long userId = ThreadLocalUtls.getUser().getId();blog.setUserId(userId);// 保存探店笔记boolean isSuccess = this.save(blog);if (!isSuccess){return Result.fail("笔记保存失败");}// 查询笔记作者的所有粉丝List<Follow> follows = followService.list(new LambdaQueryWrapper<Follow>().eq(Follow::getFollowUserId, userId));// 将笔记推送给所有的粉丝for (Follow follow : follows) {// 获取粉丝的idLong id = follow.getUserId();// 推送笔记String key = FEED_KEY + id;stringRedisTemplate.opsForZSet().add(key, blog.getId().toString(), System.currentTimeMillis());}return Result.ok(blog.getId());}

3.4.实现关注推送页面的分页查询:

a.滚动分页查询收件箱的思路:

  • 1.Redis中的数据样例:
    在这里插入图片描述
  • 2.角标查询及其问题演示:
    在这里插入图片描述
  • 3.滚动查询演示:
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述

b.接口介绍:

在这里插入图片描述

b.编码实现:

    /*** 关注推送页面的笔记分页** @param max* @param offset* @return*/@Overridepublic Result queryBlogOfFollow(Long max, Integer offset) {// 1、查询收件箱Long userId = ThreadLocalUtls.getUser().getId();String key = FEED_KEY + userId;// ZREVRANGEBYSCORE key Max Min LIMIT offset countSet<ZSetOperations.TypedTuple<String>> typedTuples = stringRedisTemplate.opsForZSet().reverseRangeByScoreWithScores(key, 0, max, offset, 2);// 2、判断收件箱中是否有数据if (typedTuples == null || typedTuples.isEmpty()) {return Result.ok();}// 3、收件箱中有数据,则解析数据: blogId、minTime(时间戳)、offsetList<Long> ids = new ArrayList<>(typedTuples.size());long minTime = 0; // 记录当前最小值int os = 1; // 偏移量offset,用来计数for (ZSetOperations.TypedTuple<String> tuple : typedTuples) { // 5 4 4 2 2// 获取idids.add(Long.valueOf(tuple.getValue()));// 获取分数(时间戳)long time = tuple.getScore().longValue();if (time == minTime) {// 当前时间等于最小时间,偏移量+1os++;} else {// 当前时间不等于最小时间,重置minTime = time;os = 1;}}// 4、根据id查询blog(使用in查询的数据是默认按照id升序排序的,这里需要使用我们自己指定的顺序排序)String idStr = StrUtil.join(",", ids);List<Blog> blogs = this.list(new LambdaQueryWrapper<Blog>().in(Blog::getId, ids).last("ORDER BY FIELD(id," + idStr + ")"));// 设置blog相关的用户数据,是否被点赞等属性值for (Blog blog : blogs) {// 查询blog有关的用户queryUserByBlog(blog);// 查询blog是否被点赞isBlogLiked(blog);}// 5、封装并返回ScrollResult scrollResult = new ScrollResult();scrollResult.setList(blogs);scrollResult.setOffset(os);scrollResult.setMinTime(minTime);return Result.ok(scrollResult);}

在这里插入图片描述
在这里插入图片描述

\


这篇关于Redis应用之Feed流关注推送的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1146563

相关文章

redis群集简单部署过程

《redis群集简单部署过程》文章介绍了Redis,一个高性能的键值存储系统,其支持多种数据结构和命令,它还讨论了Redis的服务器端架构、数据存储和获取、协议和命令、高可用性方案、缓存机制以及监控和... 目录Redis介绍1. 基本概念2. 服务器端3. 存储和获取数据4. 协议和命令5. 高可用性6.

Redis的数据过期策略和数据淘汰策略

《Redis的数据过期策略和数据淘汰策略》本文主要介绍了Redis的数据过期策略和数据淘汰策略,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录一、数据过期策略1、惰性删除2、定期删除二、数据淘汰策略1、数据淘汰策略概念2、8种数据淘汰策略

Redis存储的列表分页和检索的实现方法

《Redis存储的列表分页和检索的实现方法》在Redis中,列表(List)是一种有序的数据结构,通常用于存储一系列元素,由于列表是有序的,可以通过索引来访问元素,因此可以很方便地实现分页和检索功能,... 目录一、Redis 列表的基本操作二、分页实现三、检索实现3.1 方法 1:客户端过滤3.2 方法

Python中操作Redis的常用方法小结

《Python中操作Redis的常用方法小结》这篇文章主要为大家详细介绍了Python中操作Redis的常用方法,文中的示例代码简洁易懂,具有一定的借鉴价值,有需要的小伙伴可以了解一下... 目录安装Redis开启、关闭Redisredis数据结构redis-cli操作安装redis-py数据库连接和释放增

redis防止短信恶意调用的实现

《redis防止短信恶意调用的实现》本文主要介绍了在场景登录或注册接口中使用短信验证码时遇到的恶意调用问题,并通过使用Redis分布式锁来解决,具有一定的参考价值,感兴趣的可以了解一下... 目录1.场景2.排查3.解决方案3.1 Redis锁实现3.2 方法调用1.场景登录或注册接口中,使用短信验证码场

Redis 多规则限流和防重复提交方案实现小结

《Redis多规则限流和防重复提交方案实现小结》本文主要介绍了Redis多规则限流和防重复提交方案实现小结,包括使用String结构和Zset结构来记录用户IP的访问次数,具有一定的参考价值,感兴趣... 目录一:使用 String 结构记录固定时间段内某用户 IP 访问某接口的次数二:使用 Zset 进行

解读Redis秒杀优化方案(阻塞队列+基于Stream流的消息队列)

《解读Redis秒杀优化方案(阻塞队列+基于Stream流的消息队列)》该文章介绍了使用Redis的阻塞队列和Stream流的消息队列来优化秒杀系统的方案,通过将秒杀流程拆分为两条流水线,使用Redi... 目录Redis秒杀优化方案(阻塞队列+Stream流的消息队列)什么是消息队列?消费者组的工作方式每

Redis如何使用zset处理排行榜和计数问题

《Redis如何使用zset处理排行榜和计数问题》Redis的ZSET数据结构非常适合处理排行榜和计数问题,它可以在高并发的点赞业务中高效地管理点赞的排名,并且由于ZSET的排序特性,可以轻松实现根据... 目录Redis使用zset处理排行榜和计数业务逻辑ZSET 数据结构优化高并发的点赞操作ZSET 结

5分钟获取deepseek api并搭建简易问答应用

《5分钟获取deepseekapi并搭建简易问答应用》本文主要介绍了5分钟获取deepseekapi并搭建简易问答应用,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需... 目录1、获取api2、获取base_url和chat_model3、配置模型参数方法一:终端中临时将加

Redis的Zset类型及相关命令详细讲解

《Redis的Zset类型及相关命令详细讲解》:本文主要介绍Redis的Zset类型及相关命令的相关资料,有序集合Zset是一种Redis数据结构,它类似于集合Set,但每个元素都有一个关联的分数... 目录Zset简介ZADDZCARDZCOUNTZRANGEZREVRANGEZRANGEBYSCOREZ