PC/MCU/SoC使用的计算机架构(Architecture)

2024-09-07 21:44

本文主要是介绍PC/MCU/SoC使用的计算机架构(Architecture),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1. 冯·诺依曼结构

冯·诺依曼结构(Von Neumann Architecture)是计算机系统的经典架构,由数学家约翰·冯·诺依曼在1945年提出。它的核心思想是程序存储器数据存储器共享同一存储设备,程序和数据以相同的方式存储和访问。冯·诺依曼架构的主要特点包括:

  • 单一存储器:存储程序指令和数据在同一个存储器中。
  • 控制单元:通过程序计数器顺序执行指令。
  • 数据路径:通过一个共享的总线,将数据和指令从存储器传输到处理器。
  • 顺序执行:程序指令按顺序执行(除非有跳转指令)。

这种架构由于其简单、可行,成为了计算机设计的基石,并被广泛应用于早期计算机。

冯·诺依曼瓶颈

冯·诺依曼结构存在一个著名的问题,称为“冯·诺依曼瓶颈”。这是由于数据和指令通过相同的总线进行传输,导致在高并发情况下,数据和指令的访问速度无法满足处理器的需求,形成性能瓶颈。

2. 哈佛结构

哈佛结构(Harvard Architecture)是另一种计算机架构,最初用于早期的信号处理设备。与冯·诺依曼架构不同,哈佛架构将程序指令和数据分别存储在不同的存储器中,并使用独立的总线进行访问。这使得程序和数据的读取可以并行进行,从而提高系统性能。

哈佛结构的主要特点:

  • 独立的存储空间:指令存储器和数据存储器彼此独立,彼此不共享。
  • 并行数据与指令访问:可以同时从指令存储器读取指令,并从数据存储器读取/写入数据。
  • 提高性能:减少了冯·诺依曼瓶颈带来的等待时间问题。
应用场景

哈佛架构主要应用于需要高效率和并行处理的场合,特别是嵌入式系统和**数字信号处理器(DSP)**等。

3. 其他架构

除了冯·诺依曼和哈佛结构,还有其他计算机架构被提出和研究,但并没有广泛应用于大多数通用计算设备中:

  • 修正哈佛结构(Modified Harvard Architecture):允许指令存储器和数据存储器独立,但可以共享数据。这种架构结合了冯·诺依曼和哈佛架构的优点,在现代处理器(如ARM和x86)中较为常见。
  • 流处理器(Stream Processing Architecture):用于并行处理大规模数据流,常见于图形处理单元(GPU)。
  • 图灵机(Turing Machine):理论计算模型,为计算理论提供了基础,但并不直接用于硬件设计。

4. 现代计算机架构

绝大多数现代计算机,包括桌面计算机、服务器、嵌入式系统、手机等,采用的是修正哈佛结构或一种混合架构。这种结构结合了哈佛架构的并行处理能力和冯·诺依曼架构的简易性,使得现代处理器既能高效并行处理数据,又能灵活编写程序。

5. 嵌入式 MCU 和 SoC 使用的架构

嵌入式MCU(Microcontroller Unit)SoC(System on Chip) 通常采用的是哈佛架构修正哈佛架构,尤其是常见的 8-bit、16-bit 和 32-bit 微控制器(如 ARM Cortex-M 系列)。原因如下:

  • 高效的数据和指令访问:嵌入式系统往往要求实时处理输入数据,因此并行访问指令和数据显著提高了系统响应速度。
  • 小型化和低功耗:嵌入式设备通常体积小、功耗低,需要简化的架构,而哈佛架构允许硬件逻辑简单化和并行化。
  • 定制优化:SoC 可以根据具体应用需求,使用多种架构混合方案以满足性能、功耗和面积的平衡需求。

6. 为什么选择哈佛架构?优势是什么?

选择哈佛架构的原因主要基于其性能和功耗优势,尤其在嵌入式系统中,这些因素非常关键。

  • 并行执行:指令和数据可以同时访问和处理,减少了处理器等待时间。
  • 简单高效:由于指令和数据路径是分开的,系统设计更加简单,能够优化执行效率和降低复杂度。
  • 适合实时系统:哈佛架构允许在短时间内高效处理数据输入,非常适合对时间敏感的任务,例如传感器数据采集和处理。

7. 总结

  • 冯·诺依曼结构:通用、经典架构,但存在“冯·诺依曼瓶颈”。
  • 哈佛结构:数据和指令独立存储和访问,性能更高,尤其在嵌入式系统和信号处理场景中有广泛应用。
  • 修正哈佛结构:结合了冯·诺依曼和哈佛架构的优点,广泛应用于现代通用计算机和处理器中。
  • 嵌入式MCU和SoC:大多数嵌入式系统采用哈佛或修正哈佛架构,因其在并行处理、效率和实时性上的优势。

这种架构之所以被广泛应用,是因为它能在嵌入式系统中实现高效、低功耗、实时响应等特性,正好满足了现代电子设备的需求。

这篇关于PC/MCU/SoC使用的计算机架构(Architecture)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1146239

相关文章

Linux使用fdisk进行磁盘的相关操作

《Linux使用fdisk进行磁盘的相关操作》fdisk命令是Linux中用于管理磁盘分区的强大文本实用程序,这篇文章主要为大家详细介绍了如何使用fdisk进行磁盘的相关操作,需要的可以了解下... 目录简介基本语法示例用法列出所有分区查看指定磁盘的区分管理指定的磁盘进入交互式模式创建一个新的分区删除一个存

C#使用HttpClient进行Post请求出现超时问题的解决及优化

《C#使用HttpClient进行Post请求出现超时问题的解决及优化》最近我的控制台程序发现有时候总是出现请求超时等问题,通常好几分钟最多只有3-4个请求,在使用apipost发现并发10个5分钟也... 目录优化结论单例HttpClient连接池耗尽和并发并发异步最终优化后优化结论我直接上优化结论吧,

SpringBoot使用Apache Tika检测敏感信息

《SpringBoot使用ApacheTika检测敏感信息》ApacheTika是一个功能强大的内容分析工具,它能够从多种文件格式中提取文本、元数据以及其他结构化信息,下面我们来看看如何使用Ap... 目录Tika 主要特性1. 多格式支持2. 自动文件类型检测3. 文本和元数据提取4. 支持 OCR(光学

JAVA系统中Spring Boot应用程序的配置文件application.yml使用详解

《JAVA系统中SpringBoot应用程序的配置文件application.yml使用详解》:本文主要介绍JAVA系统中SpringBoot应用程序的配置文件application.yml的... 目录文件路径文件内容解释1. Server 配置2. Spring 配置3. Logging 配置4. Ma

Linux使用dd命令来复制和转换数据的操作方法

《Linux使用dd命令来复制和转换数据的操作方法》Linux中的dd命令是一个功能强大的数据复制和转换实用程序,它以较低级别运行,通常用于创建可启动的USB驱动器、克隆磁盘和生成随机数据等任务,本文... 目录简介功能和能力语法常用选项示例用法基础用法创建可启动www.chinasem.cn的 USB 驱动

C#使用yield关键字实现提升迭代性能与效率

《C#使用yield关键字实现提升迭代性能与效率》yield关键字在C#中简化了数据迭代的方式,实现了按需生成数据,自动维护迭代状态,本文主要来聊聊如何使用yield关键字实现提升迭代性能与效率,感兴... 目录前言传统迭代和yield迭代方式对比yield延迟加载按需获取数据yield break显式示迭

使用SQL语言查询多个Excel表格的操作方法

《使用SQL语言查询多个Excel表格的操作方法》本文介绍了如何使用SQL语言查询多个Excel表格,通过将所有Excel表格放入一个.xlsx文件中,并使用pandas和pandasql库进行读取和... 目录如何用SQL语言查询多个Excel表格如何使用sql查询excel内容1. 简介2. 实现思路3

java脚本使用不同版本jdk的说明介绍

《java脚本使用不同版本jdk的说明介绍》本文介绍了在Java中执行JavaScript脚本的几种方式,包括使用ScriptEngine、Nashorn和GraalVM,ScriptEngine适用... 目录Java脚本使用不同版本jdk的说明1.使用ScriptEngine执行javascript2.

c# checked和unchecked关键字的使用

《c#checked和unchecked关键字的使用》C#中的checked关键字用于启用整数运算的溢出检查,可以捕获并抛出System.OverflowException异常,而unchecked... 目录在 C# 中,checked 关键字用于启用整数运算的溢出检查。默认情况下,C# 的整数运算不会自

在MyBatis的XML映射文件中<trim>元素所有场景下的完整使用示例代码

《在MyBatis的XML映射文件中<trim>元素所有场景下的完整使用示例代码》在MyBatis的XML映射文件中,trim元素用于动态添加SQL语句的一部分,处理前缀、后缀及多余的逗号或连接符,示... 在MyBATis的XML映射文件中,<trim>元素用于动态地添加SQL语句的一部分,例如SET或W