【造轮子】纯C++实现的联通组件标记算法

2024-09-07 20:28

本文主要是介绍【造轮子】纯C++实现的联通组件标记算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

学习《OpenCV应用开发:入门、进阶与工程化实践》一书
做真正的OpenCV开发者,从入门到入职,一步到位!

连接组件标记算法

连接组件标记算法(connected component labeling algorithm-CCL)是图像分析中最常用的算法之一,算法的实质是扫描一幅图像的每个像素,对于像素值相同的分为相同的组(group),最终得到图像中所有的像素连通组件。扫描的方式可以是从上到下,从左到右,对于一幅有N个像素的图像来说,最大连通组件个数为N/2。扫描是基于每个像素单位,对于二值图像而言,连通组件集合可以是V={1|白色}或者V={0|黑色}, 取决于前景色与背景色的不同。对于灰度图像来说,连图组件像素集合可能是一系列在0 ~ 255之间k的灰度值。最常见的连接组件标记算法(CCL) 是两步法,其基本原理与步骤如下:
在这里插入图片描述
寻找当前像素点P(x, y)相邻的两个像素P1(x-1, y) 与 P2(x, y-1) 都为0,则标记当前P(x,y) ,否则就就P1跟P2较小的标签赋值给P,然后继续扫描,知道结束,然后再合并所有等价标签,所以两步法可以归纳为:
算法第一步:扫描
算法第二步:合并等价类

C++ 代码实现

第一步先是扫描所有像素,然后标记每个像素,同时记录保存所有的等价类;第二步则是基于LUT查找表直接合并替换所有等价类为最小标签值,完成整个图像的标记。

void CustomCCLAlgo::connectCompoent(cv::Mat &binary, int max_k, int max_v) {int64 start = cv::getTickCount();int h = binary.rows;int w = binary.cols;cv::Mat label = cv::Mat::zeros(binary.size(), CV_32SC1);int index = 0;// apply for memory to useint** equi_labels = new int*[max_k];for (int i = 0; i < max_k; i++)equi_labels[i] = new int[max_v] {};// scan and give label id for each pixelint eq_index = 0;for (int row = 0; row < h; row++) {for (int col = 0; col < w; col++) {int pv = binary.at<uchar>(row, col);if (pv > 0) {int p1 = 0;int p2 = 0;if ((col - 1) >= 0) {p1 = label.at<int>(row, col - 1);}if ((row - 1) >= 0) {p2 = label.at<int>(row-1, col);}int nlabel = std::min(p1, p2);if (p1 == 0 || p2 == 0) {nlabel = p1 + p2;}if (nlabel == 0) {index = index + 1;nlabel = index;}if (p1 > 0 && p2 > 0 && p1 != p2) {int m_row = -1;int m_col = -1;int cnt = 0;int max_p = std::max(p1, p2);for (int i=0; i< eq_index; i++){int* v = equi_labels[i];for (int j = 0; j < max_v; j++) {if (v[j] == 0) {break;}if (v[j] == nlabel) {m_col = j;m_row = i;}if (v[j] == max_p) {cnt = 1;}}}if (m_col >=0 && m_row >=0) {if (cnt == 0) {equi_labels[m_row][m_col + 1] = max_p;}					}else {std::vector<int> temp_eq;if (p1 < p2) {equi_labels[eq_index][0] = p1;equi_labels[eq_index][1] = p2;}else {equi_labels[eq_index][0] = p2;equi_labels[eq_index][1] = p1;}eq_index++;}}label.at<int>(row, col) = nlabel;}}}this->numOfLabels = eq_index;// setup lookup tableint total = 0;for (int s = 0; s < eq_index; s++) {int* v = equi_labels[s];for (int c = 0; c < max_v; c++) {if (v[c] == 0) {break;}total++;}}int *a = new int[total+1]();a[0] = 0;for (int s = 0; s < eq_index; s++) {int* v = equi_labels[s];for (int t = 0; t < max_v; t++) {a[v[t]] = s+1;}}// meger labelfor (int row = 0; row < h; row++) {for (int col = 0; col < w; col++) {int pv = label.at<int>(row, col);label.at<int>(row, col) = a[pv];}}//释放空间for (int i = 0; i < max_k; i++)delete[] equi_labels[i];delete[] equi_labels;delete[] a;double ct = (cv::getTickCount() - start) / cv::getTickFrequency();std::cout << "total labels: " << this->numOfLabels << std::endl;printf("connected component execute time : %.5f ms\n", ct * 1000);
}

测试代码

基于4x7的像素块,测试代码如下:

CustomCCLAlgo ccalgo;
cv::Mat binary = cv::Mat::zeros(4, 7, CV_8UC1);
std::cout << "binary: " << binary << std::endl;
binary.at<uchar>(0, 2) = 255;
binary.at<uchar>(0, 5) = 255;binary.at<uchar>(1, 0) = 255;
binary.at<uchar>(1, 1) = 255;
binary.at<uchar>(1, 2) = 255;binary.at<uchar>(1, 4) = 255;
binary.at<uchar>(1, 5) = 255;
binary.at<uchar>(1, 6) = 255;binary.at<uchar>(2, 2) = 255;
binary.at<uchar>(2, 5) = 255;binary.at<uchar>(3, 1) = 255;
binary.at<uchar>(3, 2) = 255;binary.at<uchar>(3, 4) = 255;
binary.at<uchar>(3, 5) = 255;
std::cout << "binary:" << binary << std::endl;ccalgo.connectCompoent(binary, 2, 5);

运行结果如下:
在这里插入图片描述
说明代码真的可以了。

后记

这个代码有个很不好的地方,就是没有实现数组的自增长,暂时我都是自己开辟固定长度的,随着扫描的组件数目增多,耗时会不断增加,因为这个有搜索指定标签的环节,如果可以用key来直接替换,或许速度变成跟扫描组件数目增长线性无关的操作,这样速度会更快。

学习《OpenCV应用开发:入门、进阶与工程化实践》一书
做真正的OpenCV开发者,从入门到入职,一步到位!

这篇关于【造轮子】纯C++实现的联通组件标记算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1146070

相关文章

windos server2022里的DFS配置的实现

《windosserver2022里的DFS配置的实现》DFS是WindowsServer操作系统提供的一种功能,用于在多台服务器上集中管理共享文件夹和文件的分布式存储解决方案,本文就来介绍一下wi... 目录什么是DFS?优势:应用场景:DFS配置步骤什么是DFS?DFS指的是分布式文件系统(Distr

NFS实现多服务器文件的共享的方法步骤

《NFS实现多服务器文件的共享的方法步骤》NFS允许网络中的计算机之间共享资源,客户端可以透明地读写远端NFS服务器上的文件,本文就来介绍一下NFS实现多服务器文件的共享的方法步骤,感兴趣的可以了解一... 目录一、简介二、部署1、准备1、服务端和客户端:安装nfs-utils2、服务端:创建共享目录3、服

C#使用yield关键字实现提升迭代性能与效率

《C#使用yield关键字实现提升迭代性能与效率》yield关键字在C#中简化了数据迭代的方式,实现了按需生成数据,自动维护迭代状态,本文主要来聊聊如何使用yield关键字实现提升迭代性能与效率,感兴... 目录前言传统迭代和yield迭代方式对比yield延迟加载按需获取数据yield break显式示迭

Python实现高效地读写大型文件

《Python实现高效地读写大型文件》Python如何读写的是大型文件,有没有什么方法来提高效率呢,这篇文章就来和大家聊聊如何在Python中高效地读写大型文件,需要的可以了解下... 目录一、逐行读取大型文件二、分块读取大型文件三、使用 mmap 模块进行内存映射文件操作(适用于大文件)四、使用 pand

python实现pdf转word和excel的示例代码

《python实现pdf转word和excel的示例代码》本文主要介绍了python实现pdf转word和excel的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价... 目录一、引言二、python编程1,PDF转Word2,PDF转Excel三、前端页面效果展示总结一

Python xmltodict实现简化XML数据处理

《Pythonxmltodict实现简化XML数据处理》Python社区为提供了xmltodict库,它专为简化XML与Python数据结构的转换而设计,本文主要来为大家介绍一下如何使用xmltod... 目录一、引言二、XMLtodict介绍设计理念适用场景三、功能参数与属性1、parse函数2、unpa

C#实现获得某个枚举的所有名称

《C#实现获得某个枚举的所有名称》这篇文章主要为大家详细介绍了C#如何实现获得某个枚举的所有名称,文中的示例代码讲解详细,具有一定的借鉴价值,有需要的小伙伴可以参考一下... C#中获得某个枚举的所有名称using System;using System.Collections.Generic;usi

Go语言实现将中文转化为拼音功能

《Go语言实现将中文转化为拼音功能》这篇文章主要为大家详细介绍了Go语言中如何实现将中文转化为拼音功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 有这么一个需求:新用户入职 创建一系列账号比较麻烦,打算通过接口传入姓名进行初始化。想把姓名转化成拼音。因为有些账号即需要中文也需要英

C# 读写ini文件操作实现

《C#读写ini文件操作实现》本文主要介绍了C#读写ini文件操作实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录一、INI文件结构二、读取INI文件中的数据在C#应用程序中,常将INI文件作为配置文件,用于存储应用程序的

C#实现获取电脑中的端口号和硬件信息

《C#实现获取电脑中的端口号和硬件信息》这篇文章主要为大家详细介绍了C#实现获取电脑中的端口号和硬件信息的相关方法,文中的示例代码讲解详细,有需要的小伙伴可以参考一下... 我们经常在使用一个串口软件的时候,发现软件中的端口号并不是普通的COM1,而是带有硬件信息的。那么如果我们使用C#编写软件时候,如