【造轮子】纯C++实现的联通组件标记算法

2024-09-07 20:28

本文主要是介绍【造轮子】纯C++实现的联通组件标记算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

学习《OpenCV应用开发:入门、进阶与工程化实践》一书
做真正的OpenCV开发者,从入门到入职,一步到位!

连接组件标记算法

连接组件标记算法(connected component labeling algorithm-CCL)是图像分析中最常用的算法之一,算法的实质是扫描一幅图像的每个像素,对于像素值相同的分为相同的组(group),最终得到图像中所有的像素连通组件。扫描的方式可以是从上到下,从左到右,对于一幅有N个像素的图像来说,最大连通组件个数为N/2。扫描是基于每个像素单位,对于二值图像而言,连通组件集合可以是V={1|白色}或者V={0|黑色}, 取决于前景色与背景色的不同。对于灰度图像来说,连图组件像素集合可能是一系列在0 ~ 255之间k的灰度值。最常见的连接组件标记算法(CCL) 是两步法,其基本原理与步骤如下:
在这里插入图片描述
寻找当前像素点P(x, y)相邻的两个像素P1(x-1, y) 与 P2(x, y-1) 都为0,则标记当前P(x,y) ,否则就就P1跟P2较小的标签赋值给P,然后继续扫描,知道结束,然后再合并所有等价标签,所以两步法可以归纳为:
算法第一步:扫描
算法第二步:合并等价类

C++ 代码实现

第一步先是扫描所有像素,然后标记每个像素,同时记录保存所有的等价类;第二步则是基于LUT查找表直接合并替换所有等价类为最小标签值,完成整个图像的标记。

void CustomCCLAlgo::connectCompoent(cv::Mat &binary, int max_k, int max_v) {int64 start = cv::getTickCount();int h = binary.rows;int w = binary.cols;cv::Mat label = cv::Mat::zeros(binary.size(), CV_32SC1);int index = 0;// apply for memory to useint** equi_labels = new int*[max_k];for (int i = 0; i < max_k; i++)equi_labels[i] = new int[max_v] {};// scan and give label id for each pixelint eq_index = 0;for (int row = 0; row < h; row++) {for (int col = 0; col < w; col++) {int pv = binary.at<uchar>(row, col);if (pv > 0) {int p1 = 0;int p2 = 0;if ((col - 1) >= 0) {p1 = label.at<int>(row, col - 1);}if ((row - 1) >= 0) {p2 = label.at<int>(row-1, col);}int nlabel = std::min(p1, p2);if (p1 == 0 || p2 == 0) {nlabel = p1 + p2;}if (nlabel == 0) {index = index + 1;nlabel = index;}if (p1 > 0 && p2 > 0 && p1 != p2) {int m_row = -1;int m_col = -1;int cnt = 0;int max_p = std::max(p1, p2);for (int i=0; i< eq_index; i++){int* v = equi_labels[i];for (int j = 0; j < max_v; j++) {if (v[j] == 0) {break;}if (v[j] == nlabel) {m_col = j;m_row = i;}if (v[j] == max_p) {cnt = 1;}}}if (m_col >=0 && m_row >=0) {if (cnt == 0) {equi_labels[m_row][m_col + 1] = max_p;}					}else {std::vector<int> temp_eq;if (p1 < p2) {equi_labels[eq_index][0] = p1;equi_labels[eq_index][1] = p2;}else {equi_labels[eq_index][0] = p2;equi_labels[eq_index][1] = p1;}eq_index++;}}label.at<int>(row, col) = nlabel;}}}this->numOfLabels = eq_index;// setup lookup tableint total = 0;for (int s = 0; s < eq_index; s++) {int* v = equi_labels[s];for (int c = 0; c < max_v; c++) {if (v[c] == 0) {break;}total++;}}int *a = new int[total+1]();a[0] = 0;for (int s = 0; s < eq_index; s++) {int* v = equi_labels[s];for (int t = 0; t < max_v; t++) {a[v[t]] = s+1;}}// meger labelfor (int row = 0; row < h; row++) {for (int col = 0; col < w; col++) {int pv = label.at<int>(row, col);label.at<int>(row, col) = a[pv];}}//释放空间for (int i = 0; i < max_k; i++)delete[] equi_labels[i];delete[] equi_labels;delete[] a;double ct = (cv::getTickCount() - start) / cv::getTickFrequency();std::cout << "total labels: " << this->numOfLabels << std::endl;printf("connected component execute time : %.5f ms\n", ct * 1000);
}

测试代码

基于4x7的像素块,测试代码如下:

CustomCCLAlgo ccalgo;
cv::Mat binary = cv::Mat::zeros(4, 7, CV_8UC1);
std::cout << "binary: " << binary << std::endl;
binary.at<uchar>(0, 2) = 255;
binary.at<uchar>(0, 5) = 255;binary.at<uchar>(1, 0) = 255;
binary.at<uchar>(1, 1) = 255;
binary.at<uchar>(1, 2) = 255;binary.at<uchar>(1, 4) = 255;
binary.at<uchar>(1, 5) = 255;
binary.at<uchar>(1, 6) = 255;binary.at<uchar>(2, 2) = 255;
binary.at<uchar>(2, 5) = 255;binary.at<uchar>(3, 1) = 255;
binary.at<uchar>(3, 2) = 255;binary.at<uchar>(3, 4) = 255;
binary.at<uchar>(3, 5) = 255;
std::cout << "binary:" << binary << std::endl;ccalgo.connectCompoent(binary, 2, 5);

运行结果如下:
在这里插入图片描述
说明代码真的可以了。

后记

这个代码有个很不好的地方,就是没有实现数组的自增长,暂时我都是自己开辟固定长度的,随着扫描的组件数目增多,耗时会不断增加,因为这个有搜索指定标签的环节,如果可以用key来直接替换,或许速度变成跟扫描组件数目增长线性无关的操作,这样速度会更快。

学习《OpenCV应用开发:入门、进阶与工程化实践》一书
做真正的OpenCV开发者,从入门到入职,一步到位!

这篇关于【造轮子】纯C++实现的联通组件标记算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1146070

相关文章

Springboot处理跨域的实现方式(附Demo)

《Springboot处理跨域的实现方式(附Demo)》:本文主要介绍Springboot处理跨域的实现方式(附Demo),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不... 目录Springboot处理跨域的方式1. 基本知识2. @CrossOrigin3. 全局跨域设置4.

Spring Boot 3.4.3 基于 Spring WebFlux 实现 SSE 功能(代码示例)

《SpringBoot3.4.3基于SpringWebFlux实现SSE功能(代码示例)》SpringBoot3.4.3结合SpringWebFlux实现SSE功能,为实时数据推送提供... 目录1. SSE 简介1.1 什么是 SSE?1.2 SSE 的优点1.3 适用场景2. Spring WebFlu

基于SpringBoot实现文件秒传功能

《基于SpringBoot实现文件秒传功能》在开发Web应用时,文件上传是一个常见需求,然而,当用户需要上传大文件或相同文件多次时,会造成带宽浪费和服务器存储冗余,此时可以使用文件秒传技术通过识别重复... 目录前言文件秒传原理代码实现1. 创建项目基础结构2. 创建上传存储代码3. 创建Result类4.

SpringBoot日志配置SLF4J和Logback的方法实现

《SpringBoot日志配置SLF4J和Logback的方法实现》日志记录是不可或缺的一部分,本文主要介绍了SpringBoot日志配置SLF4J和Logback的方法实现,文中通过示例代码介绍的非... 目录一、前言二、案例一:初识日志三、案例二:使用Lombok输出日志四、案例三:配置Logback一

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.

Python+PyQt5实现多屏幕协同播放功能

《Python+PyQt5实现多屏幕协同播放功能》在现代会议展示、数字广告、展览展示等场景中,多屏幕协同播放已成为刚需,下面我们就来看看如何利用Python和PyQt5开发一套功能强大的跨屏播控系统吧... 目录一、项目概述:突破传统播放限制二、核心技术解析2.1 多屏管理机制2.2 播放引擎设计2.3 专

Python实现无痛修改第三方库源码的方法详解

《Python实现无痛修改第三方库源码的方法详解》很多时候,我们下载的第三方库是不会有需求不满足的情况,但也有极少的情况,第三方库没有兼顾到需求,本文将介绍几个修改源码的操作,大家可以根据需求进行选择... 目录需求不符合模拟示例 1. 修改源文件2. 继承修改3. 猴子补丁4. 追踪局部变量需求不符合很

idea中创建新类时自动添加注释的实现

《idea中创建新类时自动添加注释的实现》在每次使用idea创建一个新类时,过了一段时间发现看不懂这个类是用来干嘛的,为了解决这个问题,我们可以设置在创建一个新类时自动添加注释,帮助我们理解这个类的用... 目录前言:详细操作:步骤一:点击上方的 文件(File),点击&nbmyHIgsp;设置(Setti

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

MySQL大表数据的分区与分库分表的实现

《MySQL大表数据的分区与分库分表的实现》数据库的分区和分库分表是两种常用的技术方案,本文主要介绍了MySQL大表数据的分区与分库分表的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有... 目录1. mysql大表数据的分区1.1 什么是分区?1.2 分区的类型1.3 分区的优点1.4 分