本文主要是介绍物联网——DMA+AD多通道,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
DMA简介
存储器映像
某些数据在运行时不会发生变化,则设置为常量,存在Flash存储器中,节省运行内存的空间
DMA结构图
DMA访问权限高于cpu
结构要素
软件触发源:存储器到存储器传输完成后,计数器清零
硬件触发源:ADC、定时器、串口
重写计数器时,需关闭DMA
DMA请求
数据宽度与对齐
目标宽度小于传输带宽:高位补零,反之,舍弃高位
数据转运与DMA
ADC扫描模式+DMA
ADC连续扫描模式下,DMA计数器的值需要自动重装
接线图
DMA常用函数
(DMA转运数据) DMA结构体配置
DMA转运函数
DMA + AD 多通道
电位器,光敏、热敏、对射式传感器作为AD多通道输入
AD通道配置
这里是ADC单次扫描模式
ADC配合DMA
还可以定时器触发ADC,ADC触发DMA
源码
#include "stm32f10x.h" // Device headeruint16_t AD_Value[4]; //定义用于存放AD转换结果的全局数组/*** 函 数:AD初始化* 参 数:无* 返 回 值:无*/
void AD_Init(void)
{/*开启时钟*/RCC_APB2PeriphClockCmd(RCC_APB2Periph_ADC1, ENABLE); //开启ADC1的时钟RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE); //开启GPIOA的时钟RCC_AHBPeriphClockCmd(RCC_AHBPeriph_DMA1, ENABLE); //开启DMA1的时钟/*设置ADC时钟*/RCC_ADCCLKConfig(RCC_PCLK2_Div6); //选择时钟6分频,ADCCLK = 72MHz / 6 = 12MHz/*GPIO初始化*/GPIO_InitTypeDef GPIO_InitStructure;GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AIN;GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0 | GPIO_Pin_1 | GPIO_Pin_2 | GPIO_Pin_3;GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;GPIO_Init(GPIOA, &GPIO_InitStructure); //将PA0、PA1、PA2和PA3引脚初始化为模拟输入/*规则组通道配置*/ADC_RegularChannelConfig(ADC1, ADC_Channel_0, 1, ADC_SampleTime_55Cycles5); //规则组序列1的位置,配置为通道0ADC_RegularChannelConfig(ADC1, ADC_Channel_1, 2, ADC_SampleTime_55Cycles5); //规则组序列2的位置,配置为通道1ADC_RegularChannelConfig(ADC1, ADC_Channel_2, 3, ADC_SampleTime_55Cycles5); //规则组序列3的位置,配置为通道2ADC_RegularChannelConfig(ADC1, ADC_Channel_3, 4, ADC_SampleTime_55Cycles5); //规则组序列4的位置,配置为通道3/*ADC初始化*/ADC_InitTypeDef ADC_InitStructure; //定义结构体变量ADC_InitStructure.ADC_Mode = ADC_Mode_Independent; //模式,选择独立模式,即单独使用ADC1ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right; //数据对齐,选择右对齐ADC_InitStructure.ADC_ExternalTrigConv = ADC_ExternalTrigConv_None; //外部触发,使用软件触发,不需要外部触发ADC_InitStructure.ADC_ContinuousConvMode = ENABLE; //连续转换,使能,每转换一次规则组序列后立刻开始下一次转换ADC_InitStructure.ADC_ScanConvMode = ENABLE; //扫描模式,使能,扫描规则组的序列,扫描数量由ADC_NbrOfChannel确定ADC_InitStructure.ADC_NbrOfChannel = 4; //通道数,为4,扫描规则组的前4个通道ADC_Init(ADC1, &ADC_InitStructure); //将结构体变量交给ADC_Init,配置ADC1/*DMA初始化*/DMA_InitTypeDef DMA_InitStructure; //定义结构体变量DMA_InitStructure.DMA_PeripheralBaseAddr = (uint32_t)&ADC1->DR; //外设基地址,给定形参AddrADMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_HalfWord; //外设数据宽度,选择半字,对应16为的ADC数据寄存器DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable; //外设地址自增,选择失能,始终以ADC数据寄存器为源DMA_InitStructure.DMA_MemoryBaseAddr = (uint32_t)AD_Value; //存储器基地址,给定存放AD转换结果的全局数组AD_ValueDMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_HalfWord; //存储器数据宽度,选择半字,与源数据宽度对应DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Enable; //存储器地址自增,选择使能,每次转运后,数组移到下一个位置DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralSRC; //数据传输方向,选择由外设到存储器,ADC数据寄存器转到数组DMA_InitStructure.DMA_BufferSize = 4; //转运的数据大小(转运次数),与ADC通道数一致DMA_InitStructure.DMA_Mode = DMA_Mode_Circular; //模式,选择循环模式,与ADC的连续转换一致DMA_InitStructure.DMA_M2M = DMA_M2M_Disable; //存储器到存储器,选择失能,数据由ADC外设触发转运到存储器DMA_InitStructure.DMA_Priority = DMA_Priority_Medium; //优先级,选择中等DMA_Init(DMA1_Channel1, &DMA_InitStructure); //将结构体变量交给DMA_Init,配置DMA1的通道1/*DMA和ADC使能*/DMA_Cmd(DMA1_Channel1, ENABLE); //DMA1的通道1使能ADC_DMACmd(ADC1, ENABLE); //ADC1触发DMA1的信号使能ADC_Cmd(ADC1, ENABLE); //ADC1使能/*ADC校准*/ADC_ResetCalibration(ADC1); //固定流程,内部有电路会自动执行校准while (ADC_GetResetCalibrationStatus(ADC1) == SET);ADC_StartCalibration(ADC1);while (ADC_GetCalibrationStatus(ADC1) == SET);/*ADC触发*/ADC_SoftwareStartConvCmd(ADC1, ENABLE); //软件触发ADC开始工作,由于ADC处于连续转换模式,故触发一次后ADC就可以一直连续不断地工作
}
这篇关于物联网——DMA+AD多通道的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!