2024高教社杯全国大学生数学建模竞赛B题原创python代码

本文主要是介绍2024高教社杯全国大学生数学建模竞赛B题原创python代码,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

以下均为python代码。先给大家看看之前文章的部分思路:

接下来我们将按照题目总体分析-背景分析-各小问分析的形式来

1 总体分析

题目提供了一个电子产品生产的案例,要求参赛者建立数学模型解决企业在生产过程中的一系列决策问题。以下是对题目的总体分析:

问题一需要企业需要从供应商购买零配件,并且需要设计一个抽样检测方案,来决定是否接受供应商提供的零配件。题目要求设计一个能够尽可能减少检测次数的方案,分别在95%和90%的置信度下,判断零配件的次品率是否超过标称值。这个问题的核心是基于统计学的抽样检验,涉及假设检验和置信区间的计算。需要考虑标称值为10%的情况下,如何设计抽样数量,使得在满足不同置信水平的条件下进行接收或拒收决策。

问题二则:在生产过程中,企业需要在多个阶段做出决策,包括:

  • 是否对零配件进行检测。

  • 是否对成品进行检测。

  • 是否对不合格的成品进行拆解,决定是否将拆解后的零配件重新利用。

  • 如何处理用户退回的不合格产品。

需要根据这些参数为企业提供决策依据,并且给出相应的指标结果。

问题3:扩展的生产决策问题

在问题2的基础上,问题3进一步扩展了生产过程,增加了多个零配件和工序的情况。题目提供了多达8个零配件和2道工序的组装过程,要求针对更复杂的生产流程给出具体的决策方案。这部分问题的复杂度更高,可能涉及到多阶段决策和动态规划。

问题4:基于抽样检测的决策调整

假设问题2和问题3中的次品率均通过抽样检测得到,要求重新进行生产过程中的决策。这一问题要求参赛者结合问题1中的抽样检测方法,重新审视生产流程中的决策,可能需要重新设计检测方案,优化成本和风险的平衡。

问题2和问题3中的各个决策环节都涉及到成本效益的权衡,需要建立一个数学模型来综合考虑检测成本、拆解费用、次品率、调换损失等。

动态规划或优化模型:面对问题3中的多工序、多零配件的复杂情况,可以使用动态规划或其他优化方法,来寻找到最优的决策路径。

2 背景分析

总结一下,题目的背景集中在生产过程中的质量控制和成本优化,企业需要在多个决策点上进行权衡,既要保证最终产品的质量,又要尽量减少生产和处理的成本损失。

3 各小问分析

这道题目是关于生产过程中的决策问题,涉及到电子产品制造中的抽样检测、装配、拆解、退换货等多个环节。问题分为四个主要部分,要求为企业设计优化生产决策的数学模型。

问题1:抽样检测方案建模与分析

该问题要求设计一个抽样检测方案,判断零配件的次品率是否超过标称值。在这个问题中,零配件次品率不会超过某个标称值(如10%)。我们需要在不同信度下,决定是否接受这批零配件。

建模目标:

我们需要设计一个抽样检测方案,确保:

1.在95%的信度下,判断零配件次品率超过标称值时拒收该批次零配件。

2.在90%的信度下,判断零配件次品率不超过标称值时接收该批次零配件。

1.抽样检测方案的基础理论

  1. 假设检验 我们可以使用假设检验来进行模型设计。设: p为零配件的真实次品率。 p0为标称的次品率(10%)。 我们抽取的样本数为n,次品数为x。 根据问题要求,我们可以构建两个假设: 原假设H_0:零配件次品率p\leq p_0(零配件次品率不超过标称值,接受零配件)。 备择假设H_1:零配件次品率p>p_0(零配件次品率超过标称值,拒绝零配件)。

  2. 二项分布建模 对于每个零配件,若其合格率为1-p,则每个零配件是次品的概率为p。假设我们从一批零配件中抽取了n个样本,次品的数量服从二项分布:

其中: n是抽样数量。 p是次品率。 X是次品的个数。 可以用正态分布近似二项分布:

通过正态近似,可以使用标准化公式:

  1. 双侧检验与置信区间

我们根据问题中95%和90%的信度要求进行双侧假设检验。信度要求分别对应的显著性水平alpha为:

95%信度:对应alpha=0.05。

90%信度:对应alpha=0.10。

在这两种情况下,分别计算不同显著性水平下的拒收与接收条件。

2.具体建模步骤

第一问代码:

import math
from scipy.stats import norm
import matplotlib.pyplot as plt# 定义参数
p0 = 0.10  # 标称次品率
alpha_95 = 0.05  # 95%置信水平
alpha_90 = 0.10  # 90%置信水平
z_95 = norm.ppf(1 - alpha_95)  # 95%的临界值
z_90 = norm.ppf(1 - alpha_90)  # 90%的临界值# 计算样本量
def calculate_sample_size(z_alpha, p0, delta):return math.ceil((z_alpha**2 * p0 * (1 - p0)) / delta**2)# 假设检测误差delta为5%
delta = 0.05# 计算样本量
n_95 = calculate_sample_size(z_95, p0, delta)
n_90 = calculate_sample_size(z_90, p0, delta)# 打印结果
print(f"在95%的置信水平下,所需的最小样本量为: {n_95}")
print(f"在90%的置信水平下,所需的最小样本量为: {n_90}")# 生成图表:不同显著性水平下样本量的变化
def plot_sample_size():alphas = [0.01 * i for i in range(5, 21)]  # 从5%到20%的不同显著性水平sample_sizes = [calculate_sample_size(norm.ppf(1 - alpha), p0, delta) for alpha in alphas]plt.figure(figsize=(8, 6))plt.plot(alphas, sample_sizes, marker='o', linestyle='-', color='b')plt.title('Sample Size vs Significance Level', fontsize=14)plt.xlabel('Significance Level (Alpha)', fontsize=12)plt.ylabel('Sample Size', fontsize=12)plt.axvline(x=0.05, color='r', linestyle='--', label="95% Confidence Level")plt.axvline(x=0.10, color='g', linestyle='--', label="90% Confidence Level")plt.legend()plt.grid(True)plt.tight_layout()plt.show()# 生成图表:样本量与误差范围的关系
def plot_sample_size_vs_error():deltas = [0.01 * i for i in range(1, 21)]  # 从1%到20%的误差范围sample_sizes_95 = [calculate_sample_size(z_95, p0, delta) for delta in deltas]sample_sizes_90 = [calculate_sample_size(z_90, p0, delta) for delta in deltas]plt.figure(figsize=(8, 6))plt.plot(deltas, sample_sizes_95, label="95% Confidence Level", marker='o', linestyle='-', color='b')plt.plot(deltas, sample_sizes_90, label="90% Confidence Level", marker='o', linestyle='-', color='g')plt.title('Sample Size vs Error Margin', fontsize=14)plt.xlabel('Error Margin (Delta)', fontsize=12)plt.ylabel('Sample Size', fontsize=12)plt.legend()plt.grid(True)plt.tight_layout()plt.show()# 运行生成图表
plot_sample_size()
plot_sample_size_vs_error()

剩余看下面的名片

这篇关于2024高教社杯全国大学生数学建模竞赛B题原创python代码的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1145171

相关文章

Java调用DeepSeek API的最佳实践及详细代码示例

《Java调用DeepSeekAPI的最佳实践及详细代码示例》:本文主要介绍如何使用Java调用DeepSeekAPI,包括获取API密钥、添加HTTP客户端依赖、创建HTTP请求、处理响应、... 目录1. 获取API密钥2. 添加HTTP客户端依赖3. 创建HTTP请求4. 处理响应5. 错误处理6.

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

如何通过Python实现一个消息队列

《如何通过Python实现一个消息队列》这篇文章主要为大家详细介绍了如何通过Python实现一个简单的消息队列,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录如何通过 python 实现消息队列如何把 http 请求放在队列中执行1. 使用 queue.Queue 和 reque

Python如何实现PDF隐私信息检测

《Python如何实现PDF隐私信息检测》随着越来越多的个人信息以电子形式存储和传输,确保这些信息的安全至关重要,本文将介绍如何使用Python检测PDF文件中的隐私信息,需要的可以参考下... 目录项目背景技术栈代码解析功能说明运行结php果在当今,数据隐私保护变得尤为重要。随着越来越多的个人信息以电子形

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景

使用Python快速实现链接转word文档

《使用Python快速实现链接转word文档》这篇文章主要为大家详细介绍了如何使用Python快速实现链接转word文档功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 演示代码展示from newspaper import Articlefrom docx import

Python Jupyter Notebook导包报错问题及解决

《PythonJupyterNotebook导包报错问题及解决》在conda环境中安装包后,JupyterNotebook导入时出现ImportError,可能是由于包版本不对应或版本太高,解决方... 目录问题解决方法重新安装Jupyter NoteBook 更改Kernel总结问题在conda上安装了

Python如何计算两个不同类型列表的相似度

《Python如何计算两个不同类型列表的相似度》在编程中,经常需要比较两个列表的相似度,尤其是当这两个列表包含不同类型的元素时,下面小编就来讲讲如何使用Python计算两个不同类型列表的相似度吧... 目录摘要引言数字类型相似度欧几里得距离曼哈顿距离字符串类型相似度Levenshtein距离Jaccard相

Python安装时常见报错以及解决方案

《Python安装时常见报错以及解决方案》:本文主要介绍在安装Python、配置环境变量、使用pip以及运行Python脚本时常见的错误及其解决方案,文中介绍的非常详细,需要的朋友可以参考下... 目录一、安装 python 时常见报错及解决方案(一)安装包下载失败(二)权限不足二、配置环境变量时常见报错及

Python中顺序结构和循环结构示例代码

《Python中顺序结构和循环结构示例代码》:本文主要介绍Python中的条件语句和循环语句,条件语句用于根据条件执行不同的代码块,循环语句用于重复执行一段代码,文章还详细说明了range函数的使... 目录一、条件语句(1)条件语句的定义(2)条件语句的语法(a)单分支 if(b)双分支 if-else(