C++——list的实现

2024-09-07 11:44
文章标签 c++ 实现 list

本文主要是介绍C++——list的实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

0.前言

1.节点类 

2.迭代器类 

①普通迭代器

②const迭代器 

③模板迭代器

3.list类 

3.1 clear、析构函数、swap

①clear

② 析构函数 

③ swap

3.2构造函数 

①无参构造

 ②赋值构造

3.3 迭代器

3.4插入函数

①insert插入

②头插

③尾插

3.5 删除函数

①erase删除

②头删 

③尾删

4.测试

源代码(list.h) 


 

0.前言

我们知道,list是一个双向循环链表,所以list的每个节点中需要存在一个指向前一个节点的指针prev、一个指向下一个节点的指针next和一个数据域data

35f348f4278543a9a4d796c80ea00ba8.png

1.节点类 

因为list的底层是节点,而节点的底层又是prev、next指针和数据域data,所以我们先将节点封装为一个类,然后再用list类调用节点类。节点类的代码如下:

//定义链表节点template<class T>struct ListNode{ListNode<T>* _next;ListNode<T>* _prev;T _data;//链表节点构造函数ListNode(const T& x = T()):_next(nullptr), _prev(nullptr), _data(x){}

2.迭代器类 

在string和vector中我们使用迭代器访问数据时需要有这样的操作:

vector<int>::iterator it = l1.begin();while (it != l1.end()){cout << *it << " ";++it;}cout << endl;

 需要知悉的是,在C++中,为了方便和统一,无论什么类我们大多都采用此方法进行访问,string与vector都是连续的,如此访问必然不会有差错,可是list并不是连续的

我们希望++it就能找到下一个节点,而it解引用(*it)就得到节点里存的data,所以,为了使迭代器能够正常访问,我们在自定义的类中必须实现以下方法:

1. 指针可以解引用,迭代器的类中必须重载operator*()

2. 指针可以通过->访问其所指空间成员,迭代器类中必须重载oprator->()

3. 指针可以++向后移动,迭代器类中必须重载operator++()与operator++(int)

4. 迭代器需要进行是否相等的比较,因此还需要重载operator==()与operator!=()

代码如下:

①普通迭代器

//①普通迭代器 可读可写template<class T>struct __list_iterator{typedef ListNode<T> Node;typedef __list_iterator D;Node* _node;//迭代器构造函数__list_iterator(Node* x):_node(x){}//重载++//前置++D& operator++()//返回迭代器的引用{_node = _node->_next;//指向下一个节点return *this;}//后置++D operator++(int){D tmp(*this);_node = _node->_next;return tmp;//返回拷贝之前的值}//重载--//前置--D& operator--(){_node = _node->_prev;return *this;}//后置--D operator--(int){D tmp(*this);_node = _node->_prev;return tmp;}//重载解引用T& operator*()//返回数据的引用{return _node->_data;//返回节点里的数据}//重载->T* operator->(){return &_node->_data;}//重载!=bool operator !=(const D& s){return _node != s._node;}//重载==bool operator==(const D& s){return _node == s._node;}};

②const迭代器 

const迭代器的作用是只可读不可写,防止数据被修改,因此我们只需在普通迭代器的基础上对operator*()和operator->()添加const操作即可:

//②const迭代器 可读不可写template<class T>struct __list_const_iterator{typedef ListNode<T> Node;typedef __list_const_iterator D;Node* _node;//迭代器构造函数__list_const_iterator(Node* x):_node(x){}//重载++//前置++D& operator++()//返回迭代器的引用{_node = _node->_next;//指向下一个节点return *this;}//后置++D operator++(int){D tmp(*this);_node = _node->_next;return tmp;//返回拷贝之前的值}//重载--//前置--D& operator--(){_node = _node->_prev;return *this;}//后置--D operator--(int){D tmp(*this);_node = _node->_prev;return tmp;}//重载解引用const T& operator*()//返回数据的引用{return _node->_data;//返回节点里的数据}//重载->const T* operator->(){return &_node->_data; }//重载!=bool operator !=(const D& s){return _node != s._node;}//重载==bool operator==(const D& s){return _node == s._node;}};

③模板迭代器

观察以上两个迭代器,不同之处也就在于对operator*()和operator->()的操作不同,代码相似度可以说达到了90%,那么有没有办法减少冗余,提高代码的可读性呢?

答案当然是有的,我们可以为两个迭代器提供一个共同的模板,再提供两个参数,当调用普通迭代器和const迭代器时,只需根据所传递的参数而选择不同的迭代器。

template<class T, class Ref, class Ptr>struct __list_iterator{typedef ListNode<T> Node;typedef __list_iterator<T, Ref, Ptr> D;Node* _node;//迭代器构造函数__list_iterator(Node* x):_node(x){}//重载++//前置++D& operator++()//返回迭代器的引用{_node = _node->_next;//指向下一个节点return *this;}//后置++D operator++(int){D tmp(*this);_node = _node->_next;return tmp;//返回拷贝之前的值}//重载--//前置--D& operator--(){_node = _node->_prev;return *this;}//后置--D operator--(int){D tmp(*this);_node = _node->_prev;return tmp;}//重载解引用Ref operator*()//返回数据的引用{return _node->_data;//返回节点里的数据}//重载->Ptr operator->(){return &_node->_data;}//重载!=bool operator !=(const D& s){return _node != s._node;}//重载==bool operator==(const D& s){return _node == s._node;}};

3.list类 

做好了节点类和迭代器类的准备工作,终于来到了主角list类

//定义链表template<class T>class list{typedef ListNode<T> Node;public:/*typedef __list_iterator<T> iterator;typedef __list_const_iterator<T> const_iterator;*/typedef __list_iterator<T, T&, T*> iterator;typedef __list_iterator<T, const T&, const T*> const_iterator;private:Node* _head;};

3.1 clear、析构函数、swap

①clear

//clearvoid clear(){iterator it = begin();while (it != end()){it = erase(it);}}

② 析构函数 

//析构函数~list(){clear();delete _head;_head = nullptr;}

③ swap

//swapvoid swap(list<T>& tmp){std::swap(_head, tmp._head);}

3.2构造函数 

①无参构造

//链表构造函数list(){_head = new Node;_head->_next = _head;_head->_prev = _head;}

 ②赋值构造

//operator=list<T>& operator=(list<T> lt){swap(lt);return *this;}

3.3 迭代器

//普通迭代器iterator begin(){//return iterator(_head->_next);return _head->_next;//单参数的构造函数支持隐式类型转换}iterator end(){return _head;}//const迭代器const_iterator begin() const{//return iterator(_head->_next);return _head->_next;//单参数的构造函数支持隐式类型转换}const_iterator end() const{return _head;}

3.4插入函数

①insert插入

//insert插入
iterator insert(iterator pos, const T& x)
{Node* cur = pos._node;//取当前节点Node* prev = cur->_prev;//当前节点的前一个节点Node* newnode = new Node(x);//创建并初始化新节点prev->_next = newnode;//前一个节点的_next指针指向新节点newnode->_prev = prev;//新节点的_prev指针指向前一个节点newnode->_next = cur;//新节点的_next指针指向当前节点(此时相对于新节点就变成了后一个节点)cur->_prev = newnode;//当前节点的_prev指针指向新节点(此时相对于新节点就变成了后一个节点)//return iterator(newnode);return newnode;
}

②头插

//push_front头插void push_front(const T& x){insert(begin(), x);}

③尾插

原始写法

void push_back(const T& x){Node* newnode = new Node(x);//开辟并初始化新节点newnode Node* tail = _head->_prev;//定义上一个节点为tailtail->_next = newnode;//上一个节点tail的next指针指向新节点newnodenewnode->_prev = tail;//新节点newnode的prev指针指向上一个节点tailnewnode->_next = _head;//新节点newnode的next指针指向头节点_head_head->_prev = newnode;//头节点_head的prve指针指向新节点newnode}

复用insert

void push_back(const T& x){insert(end(), x);}

复用尾插,写拷贝构造:

//拷贝构造list(list<T>& lt){_head = new Node;_head->_next = _head;_head->_prev = _head;//拷贝之前先创建一个头节点,自己指向自己for (const auto& e : lt){push_back(e);}}

3.5 删除函数

①erase删除

iterator erase(iterator pos){assert(pos != end());//避免删除哨兵位的头节点Node* cur = pos._node;//取当前节点Node* prev = cur->_prev;//取前一个节点Node* next = cur->_next;//取后一个节点prev->_next = next;next->_prev = prev;//销毁当前节点delete cur;return next;}

②头删 

//pop_front头删void pop_front(){erase(begin());}

③尾删

//pop_back尾删void pop_back(){erase(--end());}

4.测试

void test_list(){//无参构造list<int> l1;for (auto e : l1){cout << e << " ";}cout << endl;//插入//insert插入l1.insert(l1.begin(), 1);for (auto e : l1){cout << e << " ";}cout << endl;//头插l1.push_front(0);for (auto e : l1){cout << e << " ";}cout << endl;//尾插l1.push_back(2);l1.push_back(3);l1.push_back(4);for (auto e : l1){cout << e << " ";}cout << endl;//删除//erase删除l1.erase(l1.begin());for (auto e : l1){cout << e << " ";}cout << endl;//头删l1.pop_front();for (auto e : l1){cout << e << " ";}cout << endl;//尾删l1.pop_back();for (auto e : l1){cout << e << " ";}cout << endl;//赋值构造list<int> l2 = l1;for (auto e : l1){cout << e << " ";}cout << endl;}

86afb71c747f45f981e321057edb713d.png

源代码(list.h) 

#pragma once#include <iostream>
#include <assert.h>
using namespace std;
#include <assert.h>namespace xxk
{//定义链表节点template<class T>struct ListNode{ListNode<T>* _next;ListNode<T>* _prev;T _data;//链表节点构造函数ListNode(const T& x = T()):_next(nullptr), _prev(nullptr), _data(x){}};//定义迭代器//在vector使用迭代器时:/*vector<int>::iterator it = l1.begin();while (it != l1.end()){cout << *it << " ";++it;}cout << endl;*///在这段代码中我们希望++it就能找到下一个节点,而it解引用(*it)我们需要得到节点里存的data//可是链表并不是连续的,因迭代器使用形式与指针完全相同,想要实现以上功能,我们必须要在自定义类中实现以下方法://1. 指针可以解引用,迭代器的类中必须重载operator*()//2. 指针可以通过->访问其所指空间成员,迭代器类中必须重载oprator->()//3. 指针可以++向后移动,迭代器类中必须重载operator++()与operator++(int)//   至于operator--() / operator--(int)释放需要重载,根据具体的结构来抉择,双向链表可以向前移动,//   所以需要重载,如果是forward_list就不需要重载--//4. 迭代器需要进行是否相等的比较,因此还需要重载operator == ()与operator != ()//③为减少冗余,提高代码的可读性,使用模板将两个类写到一起template<class T, class Ref, class Ptr>struct __list_iterator{typedef ListNode<T> Node;typedef __list_iterator<T, Ref, Ptr> D;Node* _node;//迭代器构造函数__list_iterator(Node* x):_node(x){}//重载++//前置++D& operator++()//返回迭代器的引用{_node = _node->_next;//指向下一个节点return *this;}//后置++D operator++(int){D tmp(*this);_node = _node->_next;return tmp;//返回拷贝之前的值}//重载--//前置--D& operator--(){_node = _node->_prev;return *this;}//后置--D operator--(int){D tmp(*this);_node = _node->_prev;return tmp;}//重载解引用Ref operator*()//返回数据的引用{return _node->_data;//返回节点里的数据}//重载->Ptr operator->(){return &_node->_data;}//重载!=bool operator !=(const D& s){return _node != s._node;}//重载==bool operator==(const D& s){return _node == s._node;}};//定义链表template<class T>class list{typedef ListNode<T> Node;public:/*typedef __list_iterator<T> iterator;typedef __list_const_iterator<T> const_iterator;*/typedef __list_iterator<T, T&, T*> iterator;typedef __list_iterator<T, const T&, const T*> const_iterator;//普通迭代器iterator begin(){//return iterator(_head->_next);return _head->_next;//单参数的构造函数支持隐式类型转换}iterator end(){return _head;}//const迭代器const_iterator begin() const{//return iterator(_head->_next);return _head->_next;//单参数的构造函数支持隐式类型转换}const_iterator end() const{return _head;}//链表构造函数list(){_head = new Node;_head->_next = _head;_head->_prev = _head;}//clearvoid clear(){iterator it = begin();while (it != end()){it = erase(it);}}//析构函数~list(){clear();delete _head;_head = nullptr;}//拷贝构造list(list<T>& lt){_head = new Node;_head->_next = _head;_head->_prev = _head;//拷贝之前先创建一个头节点,自己指向自己for (const auto& e : lt){push_back(e);}}//swapvoid swap(list<T>& tmp){std::swap(_head, tmp._head);}//operator=list<T>& operator=(list<T> lt){swap(lt);return *this;}//尾插①//void push_back(const T& x)//{//	Node* newnode = new Node(x);//开辟并初始化新节点newnode //	Node* tail = _head->_prev;//定义上一个节点为tail//	tail->_next = newnode;//上一个节点tail的next指针指向新节点newnode//	newnode->_prev = tail;//新节点newnode的prev指针指向上一个节点tail//	newnode->_next = _head;//新节点newnode的next指针指向头节点_head//	_head->_prev = newnode;//头节点_head的prve指针指向新节点newnode//}//②复用insertvoid push_back(const T& x){insert(end(), x);}//insert插入iterator insert(iterator pos, const T& x){Node* cur = pos._node;//取当前节点Node* prev = cur->_prev;//当前节点的前一个节点Node* newnode = new Node(x);//创建并初始化新节点prev->_next = newnode;//前一个节点的_next指针指向新节点newnode->_prev = prev;//新节点的_prev指针指向前一个节点newnode->_next = cur;//新节点的_next指针指向当前节点(此时相对于新节点就变成了后一个节点)cur->_prev = newnode;//当前节点的_prev指针指向新节点(此时相对于新节点就变成了后一个节点)//return iterator(newnode);return newnode;}//push_front头插void push_front(const T& x){insert(begin(), x);}//erase删除函数iterator erase(iterator pos){assert(pos != end());//避免删除哨兵位的头节点Node* cur = pos._node;//取当前节点Node* prev = cur->_prev;//取前一个节点Node* next = cur->_next;//取后一个节点prev->_next = next;next->_prev = prev;//销毁当前节点delete cur;return next;}//pop_back尾删void pop_back(){erase(--end());}//pop_front头删void pop_front(){erase(begin());}private:Node* _head;};void test_list(){//无参构造list<int> l1;for (auto e : l1){cout << e << " ";}cout << endl;//插入//insert插入l1.insert(l1.begin(), 1);for (auto e : l1){cout << e << " ";}cout << endl;//头插l1.push_front(0);for (auto e : l1){cout << e << " ";}cout << endl;//尾插l1.push_back(2);l1.push_back(3);l1.push_back(4);for (auto e : l1){cout << e << " ";}cout << endl;//删除//erase删除l1.erase(l1.begin());for (auto e : l1){cout << e << " ";}cout << endl;//头删l1.pop_front();for (auto e : l1){cout << e << " ";}cout << endl;//尾删l1.pop_back();for (auto e : l1){cout << e << " ";}cout << endl;//赋值构造list<int> l2 = l1;for (auto e : l1){cout << e << " ";}cout << endl;}
}

 

 

这篇关于C++——list的实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1144964

相关文章

SpringBoot集成redisson实现延时队列教程

《SpringBoot集成redisson实现延时队列教程》文章介绍了使用Redisson实现延迟队列的完整步骤,包括依赖导入、Redis配置、工具类封装、业务枚举定义、执行器实现、Bean创建、消费... 目录1、先给项目导入Redisson依赖2、配置redis3、创建 RedissonConfig 配

SpringBoot分段处理List集合多线程批量插入数据方式

《SpringBoot分段处理List集合多线程批量插入数据方式》文章介绍如何处理大数据量List批量插入数据库的优化方案:通过拆分List并分配独立线程处理,结合Spring线程池与异步方法提升效率... 目录项目场景解决方案1.实体类2.Mapper3.spring容器注入线程池bejsan对象4.创建

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

C++右移运算符的一个小坑及解决

《C++右移运算符的一个小坑及解决》文章指出右移运算符处理负数时左侧补1导致死循环,与除法行为不同,强调需注意补码机制以正确统计二进制1的个数... 目录我遇到了这么一个www.chinasem.cn函数由此可以看到也很好理解总结我遇到了这么一个函数template<typename T>unsigned

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

SpringBoot+RustFS 实现文件切片极速上传的实例代码

《SpringBoot+RustFS实现文件切片极速上传的实例代码》本文介绍利用SpringBoot和RustFS构建高性能文件切片上传系统,实现大文件秒传、断点续传和分片上传等功能,具有一定的参考... 目录一、为什么选择 RustFS + SpringBoot?二、环境准备与部署2.1 安装 RustF

Nginx部署HTTP/3的实现步骤

《Nginx部署HTTP/3的实现步骤》本文介绍了在Nginx中部署HTTP/3的详细步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录前提条件第一步:安装必要的依赖库第二步:获取并构建 BoringSSL第三步:获取 Nginx

MyBatis Plus实现时间字段自动填充的完整方案

《MyBatisPlus实现时间字段自动填充的完整方案》在日常开发中,我们经常需要记录数据的创建时间和更新时间,传统的做法是在每次插入或更新操作时手动设置这些时间字段,这种方式不仅繁琐,还容易遗漏,... 目录前言解决目标技术栈实现步骤1. 实体类注解配置2. 创建元数据处理器3. 服务层代码优化填充机制详

Python实现Excel批量样式修改器(附完整代码)

《Python实现Excel批量样式修改器(附完整代码)》这篇文章主要为大家详细介绍了如何使用Python实现一个Excel批量样式修改器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录前言功能特性核心功能界面特性系统要求安装说明使用指南基本操作流程高级功能技术实现核心技术栈关键函