[dp]答疑

2024-09-07 11:12
文章标签 dp 答疑

本文主要是介绍[dp]答疑,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

题目描述

在一个数轴上,有 n n n 个同学等待老师的答疑。老师最先站在 k k k 号同学的位置。老师需要解决所有同学的问题,解决一个问题都只需要 0 0 0 秒。学生很没有耐心,每等一秒钟就会增加 w i w_i wi 的不开心值。老师以 1 m / s 1m/s 1m/s 的速度开始行动,他想知道解决完所有同学的问题最少需要多少的不开心值。

输入格式

第一行输入两个整数 n n n k k k,表示等待答疑的学生数量和老师最先站在几号同学的旁边。
接下来 n n n 行,每行两个整数 x x x y y y,表示第 i i i 个同学的位置和每秒增加的不开心值。

输出格式

输出一行一个整数表示最小的不开心值。

数据范围

对于 40 % 40\% 40% 的数据, 2 ≤ n ≤ 7 2 \le n \le 7 2n7
对于 100 % 100\% 100% 的数据, 2 ≤ n ≤ 1000 2 \le n \le 1000 2n1000 1 ≤ k ≤ 1000 1 \le k \le 1000 1k1000 0 ≤ x , y ≤ 1000 0 \le x,y \le 1000 0x,y1000

样例

样例输入1

4 3
2 2
5 8
6 1
8 7

样例输出1

56

题解

1

对于 40 % 40\% 40% 的数据,我们可以直接暴力枚举,枚举到每个学生的顺序,计算出不开心值。

进而,我们可以将枚举进化,可以得到 60 60 60 分。
我们还是 dfs 出每个位置,边枚举边计算不开心值,进行剪枝。

在 dfs 前,可以先排序,在实践中发现排序后一般比不排序快
x 表示解决的数量,z 表示现在的不开心值(即每秒增加的不开心),s 表示不开心值,o 记录上一次走到的位置
inline void dfs(int x, int z, int s, int o){//剪枝if(s >= ans){return;}if(x > n){ans = min(ans, s);return;}for(int i = o - 1; i >= 1; -- i){if(!f[i]){f[i] = 1;dfs(x + 1, z - u[i].b, s + abs(u[o].a - u[i].a) * z, i);f[i] = 0;}}for(int i = o + 1; i <= n; ++ i){if(!f[i]){f[i] = 1;dfs(x + 1, z - u[i].b, s + abs(u[o].a - u[i].a) * z, i);f[i] = 0;}}
}

这里 dfs 也可以优化到 100 100 100 分,跟下面做法类似。

2

考虑使用 区间dp,记录从 i i i j j j 的最小不开心值( i ≤ j i \le j ij)。

i i i j j j 的区间,有两种情况:

  1. i i i 开始到 j j j,到 j j j 停止。
  2. j j j 开始到 i i i,到 i i i 停止。

定义 f i , j , 0 / 1 f_{i,j,0/1} fi,j,0/1 表示从 i i i j j j 和从 j j j i i i 的最小不开心值。
最开始 f k , k , 0 f_{k,k,0} fk,k,0 f k , k , 1 f_{k,k,1} fk,k,1 都为 0 0 0(因为老师最开始就在 k k k 同学位置),其他位置都为无穷大。

考虑转移 f i , j , 0 f_{i,j,0} fi,j,0,它可以从 f i , j − 1 , 0 f_{i,j-1,0} fi,j1,0 转移过来,即从 i i i j j j,可以先从 i i i j − 1 j - 1 j1,再从 j − 1 j - 1 j1 j j j;也可以从 f i , j − 1 , 1 f_{i,j-1,1} fi,j1,1 转移过来,即从 j − 1 j - 1 j1 i i i,再从 i i i j j j。尽管第二个方法看起来不是很优,但不开心值也可能比第一种小。

接下来就是计算 w w w 了。可以用一个前缀和数组 s u m sum sum 记录从 w 1 w_1 w1 w i w_i wi 的和。这下从 i i i j j j 的区间,不开心值就是排除 i i i j j j 的区间和,这里 j j j 是将要到的,并没有到,所以不计 j j j 的不开心值。

因此,我们就可以得出 f i , j , 0 f_{i,j,0} fi,j,0 的转移。
f i , j , 0 = min ⁡ ( f i , j , 0 , f i + 1 , j , 0 + ( ∣ x j + 1 . a − x j . a ∣ ) × ( s u m n − s u m k + s u m j ) , f j + 1 , k , 1 + ( ∣ x k . a − x j . a ∣ ) × ( s u m n − s u m k + s u m j ) ) f_{i,j,0} = \min(f_{i,j,0}, f_{i + 1, j, 0} + (\mid x_{j + 1}.a - x_{j}.a\mid) \times (sum_n - sum_k + sum_j), f_{j + 1, k, 1} + (\mid x_{k}.a - x_{j}.a \mid) \times (sum_{n} - sum_{k} + sum_{j})) fi,j,0=min(fi,j,0,fi+1,j,0+(xj+1.axj.a)×(sumnsumk+sumj),fj+1,k,1+(xk.axj.a)×(sumnsumk+sumj))

同理,我们可以的出 f i , j , 1 f_{i,j,1} fi,j,1 的转移。

答案就是 min ⁡ ( f 1 , n , 0 , f 1 , n , 1 ) \min(f_{1,n,0}, f_{1,n,1}) min(f1,n,0,f1,n,1) 的值。

//前缀和
for(int i = 1; i <= n; ++ i){sum[i] = sum[i - 1] + x[i].b;
} 
//预处理 dp 数组
for(int i = 0; i <= n + 1; ++ i){for(int j = 0; j <= n + 1; ++ j){f[i][j][0] = f[i][j][1] = 1e16;}
}
f[m][m][0] = f[m][m][1] = 0;//转移
for(int i = 1; i <= n; ++ i){for(int j = 1; j <= n - i; ++ j){//这里的 j 就是上文的 i, k 就是上文的 jint k = i + j;f[j][k][0] = min(f[j][k][0], min(f[j + 1][k][0] + abs(x[j + 1].a - x[j].a) * (sum[n] - sum[k] + sum[j]), f[j + 1][k][1] + abs(x[k].a - x[j].a) * (sum[n] - sum[k] + sum[j])));f[j][k][1] = min(f[j][k][1], min(f[j][k - 1][1] + abs(x[k].a - x[k - 1].a) * (sum[n] - sum[k - 1] + sum[j - 1]), f[j][k - 1][0] + abs(x[k].a - x[j].a) * (sum[n] - sum[k - 1] + sum[j - 1])));}
}

禁止抄袭!!!

这篇关于[dp]答疑的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1144900

相关文章

hdu4826(三维DP)

这是一个百度之星的资格赛第四题 题目链接:http://acm.hdu.edu.cn/contests/contest_showproblem.php?pid=1004&cid=500 题意:从左上角的点到右上角的点,每个点只能走一遍,走的方向有三个:向上,向下,向右,求最大值。 咋一看像搜索题,先暴搜,TLE,然后剪枝,还是TLE.然后我就改方法,用DP来做,这题和普通dp相比,多个个向上

hdu1011(背包树形DP)

没有完全理解这题, m个人,攻打一个map,map的入口是1,在攻打某个结点之前要先攻打其他一个结点 dp[i][j]表示m个人攻打以第i个结点为根节点的子树得到的最优解 状态转移dp[i][ j ] = max(dp[i][j], dp[i][k]+dp[t][j-k]),其中t是i结点的子节点 代码如下: #include<iostream>#include<algorithm

hdu4865(概率DP)

题意:已知前一天和今天的天气概率,某天的天气概率和叶子的潮湿程度的概率,n天叶子的湿度,求n天最有可能的天气情况。 思路:概率DP,dp[i][j]表示第i天天气为j的概率,状态转移如下:dp[i][j] = max(dp[i][j, dp[i-1][k]*table2[k][j]*table1[j][col] )  代码如下: #include <stdio.h>#include

usaco 1.1 Broken Necklace(DP)

直接上代码 接触的第一道dp ps.大概的思路就是 先从左往右用一个数组在每个点记下蓝或黑的个数 再从右到左算一遍 最后取出最大的即可 核心语句在于: 如果 str[i] = 'r'  ,   rl[i]=rl[i-1]+1, bl[i]=0 如果 str[i] = 'b' ,  bl[i]=bl[i-1]+1, rl[i]=0 如果 str[i] = 'w',  bl[i]=b

uva 10154 DP 叠乌龟

题意: 给你几只乌龟,每只乌龟有自身的重量和力量。 每只乌龟的力量可以承受自身体重和在其上的几只乌龟的体重和内。 问最多能叠放几只乌龟。 解析: 先将乌龟按力量从小到大排列。 然后dp的时候从前往后叠,状态转移方程: dp[i][j] = dp[i - 1][j];if (dp[i - 1][j - 1] != inf && dp[i - 1][j - 1] <= t[i]

uva 10118 dP

题意: 给4列篮子,每次从某一列开始无放回拿蜡烛放入篮子里,并且篮子最多只能放5支蜡烛,数字代表蜡烛的颜色。 当拿出当前颜色的蜡烛在篮子里存在时,猪脚可以把蜡烛带回家。 问最多拿多少只蜡烛。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cs

uva 10069 DP + 大数加法

代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cstring>#include <cmath>#include <stack>#include <vector>#include <queue>#include <map>#include <cl

uva 10029 HASH + DP

题意: 给一个字典,里面有好多单词。单词可以由增加、删除、变换,变成另一个单词,问能变换的最长单词长度。 解析: HASH+dp 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cstring>#include <cmath>#inc

XTU 1233 n个硬币连续m个正面个数(dp)

题面: Coins Problem Description: Duoxida buys a bottle of MaiDong from a vending machine and the machine give her n coins back. She places them in a line randomly showing head face or tail face o

dp算法练习题【8】

不同二叉搜索树 96. 不同的二叉搜索树 给你一个整数 n ,求恰由 n 个节点组成且节点值从 1 到 n 互不相同的 二叉搜索树 有多少种?返回满足题意的二叉搜索树的种数。 示例 1: 输入:n = 3输出:5 示例 2: 输入:n = 1输出:1 class Solution {public int numTrees(int n) {int[] dp = new int