如何编写Linux PCI设备驱动器 之一

2024-09-07 10:12

本文主要是介绍如何编写Linux PCI设备驱动器 之一,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

如何编写Linux PCI设备驱动器 之一

  • PCI寻址
  • PCI驱动器使用的API
    • pci_register_driver()
      • pci_driver结构
      • pci_device_id结构
  • 如何查找PCI设备
  • 存取PCI配置空间
    • 读配置空间APIs
    • 写配置空间APIs
    • where的常量值
      • 共用部分
      • 类型0
      • 类型1

PCI总线通过使用比ISA更高的时钟速率来实现更好的性能;它是时钟运行在 25 或 33 MHz,并且最近还部署了 66 MHz 甚至 133 MHz 实施方案。而且,它配备了32位数据总线,并已扩展了64位包含在规范中。

PCI总线是一种独立于平台的计算机总线,这是 PCI 的一个特别重要的特性。PC 世界一直由处理器特定的接口标准主导。目前 PCI广泛用于不同的平台,比如,X86、ARM、Alpha、PowerPC,以及其他一些平台。

PCI 设备是无跳线的。与大多数较旧的外设不同,它在启动时,自动配置。驱动程序编写者必须关注 PCI自动检测能力。 设备驱动程序必须能够访问设备中的配置信息,以完成初始化。

PCI寻址

每个 PCI 外设由总线号、设备号和功能号来标识。
PCI 规范允许单个系统承载多达 256 条总线,但是由于256总线对于许多大型系统来说是不够的,Linux现在支持PCI域。

  • 每个 PCI 域最多可以承载 256 条总线。
  • 每个总线最多可容纳 32 人设备。
  • 每个设备最多具有8个功能。

所以,每个功能可以通过一个16 位地址进行标识。Linux驱动程序不需要处理这些二进制地址,因为,驱动器是通过使用称为 pci_dev 的特定数据结构,来对设备进行操作。

在单个系统中,通过桥将多个总线连接在一起。桥是一种专用 PCI 外设,它将两个总线连接起来。

PCI系统的总体布局就像一棵树,其中每条总线都连接到上层总线,直至树根处的总线 0。

lspci可以显示 PCI 外设的16位硬件地址。这些存储在 struct pci_dev结构对象中。

PCI设备的sysfs显示就使用了这种寻址方案,但添加PCI 域信息。

当显示硬件地址时,它可以显示为

  • 两个值,一个 8 位总线号,一个 8 位设备和功能号。
  • 三个值,总线、设备和功能。
  • 四个值,域、总线、设备和功能。

使用lspci显示在系统中的PCI设备,lspci显示总线号、设备号和功能号。

~$ lspci | cut -d ":" -f1-2
00:00.0 Host bridge
00:01.0 ISA bridge
00:01.1 IDE interface
00:02.0 VGA compatible controller
00:03.0 Ethernet controller
00:04.0 System peripheral
00:05.0 Multimedia audio controller
00:06.0 USB controller
00:07.0 Bridge
00:0b.0 USB controller
00:0d.0 SATA controller

使用tree显示在系统中的PCI设备,tree显示域号,总线号、设备号和功能号。

~$ tree /sys/bus/pci/devices/
/sys/bus/pci/devices/
├── 0000:00:00.0 -> ../../../devices/pci0000:00/0000:00:00.0
├── 0000:00:01.0 -> ../../../devices/pci0000:00/0000:00:01.0
├── 0000:00:01.1 -> ../../../devices/pci0000:00/0000:00:01.1
├── 0000:00:02.0 -> ../../../devices/pci0000:00/0000:00:02.0
├── 0000:00:03.0 -> ../../../devices/pci0000:00/0000:00:03.0
├── 0000:00:04.0 -> ../../../devices/pci0000:00/0000:00:04.0
├── 0000:00:05.0 -> ../../../devices/pci0000:00/0000:00:05.0
├── 0000:00:06.0 -> ../../../devices/pci0000:00/0000:00:06.0
├── 0000:00:07.0 -> ../../../devices/pci0000:00/0000:00:07.0
├── 0000:00:0b.0 -> ../../../devices/pci0000:00/0000:00:0b.0
└── 0000:00:0d.0 -> ../../../devices/pci0000:00/0000:00:0d.0

PCI驱动器使用的API

通过 pci_register_driver(),PCI 驱动程序发现系统中的 PCI 设备。当PCI通用代码发现新设备时,将通知具有匹配“描述”的驱动程序。

pci_register_driver() 将大部分设备探测工作留给 PCI 层,并支持设备热插拔。 pci_register_driver() 调用需要传入函数指针表,和驱动程序的高级结构。

一旦驱动程序知道PCI设备,并得到控制权,则,驱动程序通常需要执行以下初始化:

  • 启用设备
  • 请求MMIO/IOP资源
  • 设置 DMA 掩码大小,包括连续和流 DMA
  • 分配并初始化共享控制数据, 调用pci_allocate_coherent()函数分配数据空间
  • 访问设备配置空间(如果需要)
  • 登记IRQ处理程序, 调用request_irq()
  • 初始化非 PCI, 即特定芯片部分
  • 启用 DMA/处理引擎

pci_register_driver()

PCI 设备驱动程序在初始化期间调用 pci_register_driver(),参数是驱动程序的结构指针:
该函数的词法:
int pci_register_driver(struct pci_driver *drv)

pci_driver结构

struct pci_driver {const char              *name;const struct pci_device_id *id_table;int (*probe)(struct pci_dev *dev, const struct pci_device_id *id);void (*remove)(struct pci_dev *dev);int (*suspend)(struct pci_dev *dev, pm_message_t state);int (*resume)(struct pci_dev *dev);void (*shutdown)(struct pci_dev *dev);int (*sriov_configure)(struct pci_dev *dev, int num_vfs);int (*sriov_set_msix_vec_count)(struct pci_dev *vf, int msix_vec_count);u32 (*sriov_get_vf_total_msix)(struct pci_dev *pf);const struct pci_error_handlers *err_handler;const struct attribute_group **groups;const struct attribute_group **dev_groups;struct device_driver    driver;struct pci_dynids       dynids;bool driver_managed_dma;
};
结构成员名称意义
name驱动器名称
id_table驱动程序支持设备的ID表的指针。大多数驱动程序应使用 MODULE_DEVICE_TABLE (pci,…) 导出此表。
probe在对现有设备执行 pci_register_driver() ,或稍后插入新设备时。对于与 ID 表匹配,且尚未被其他驱动程序“拥有”的所有 PCI 设备,将调用此探测函数。对于ID表中的条目与设备匹配的每个设备,此函数都会传递一个“struct pci_dev *”。当驱动程序选择获取设备的“所有权”时,探测函数返回零,否则返回错误代码(负数)。探测函数总是从进程上下文中调用,因此它可以休眠。
remove :无论是在驱动程序注销期间,还是手动将其从热插拔插槽中拔出,只要删除该驱动程序, 都会调用remove()函数。删除函数总是从进程上下文中调用,因此它可以休眠。
suspend将设备置于低功耗状态
resume将设备从低功耗状态唤醒。
shutdown挂接到reboot_notifier_list (kernel/sys.c)。目的是停止任何空闲的DMA操作。对于启用LAN唤醒 (NIC) ,或在重新启动之前,更改设备的电源状态非常有用。
sriov_configure可选的驱动程序回调函数,借助sysfs “sriov_numvfs”文件, 启用VF 数量的配置 。
sriov_set_msix_vec_countPF 驱动程序回调函数,用于更改 VF 上的 MSI-X 矢量数量。通过 sysfs“sriov_vf_msix_count”触发。这将更改 VF 消息控制寄存器中的 MSI-X 表大小。
sriov_get_vf_total_msixPF 驱动程序回调以获取可分发到 VF 的 MSI-X 矢量总数。
err_handler
groupssysfs 属性组。
dev_groups一旦设备绑定到驱动程序,该设备就会创建。dev_groups就是附加到该设备的属性。
driver驱动器模型结构
dynids动态添加的设备 ID 列表。
driver_managed_dma设备驱动程序不使用内核 DMA API 进行 DMA。对于大多数设备驱动程序来说,只要所有 DMA 都是通过内核 DMA API 处理的,就无需关心此标志。对于一些特殊的驱动程序,例如 VFIO 驱动程序,它们知道如何自己管理 DMA 并设置此标志,以便 IOMMU 层允许它们设置和管理自己的 I/O 地址空间。

pci_device_id结构

struct pci_device_id {__u32 vendor, device;__u32 subvendor, subdevice;__u32 class, class_mask;kernel_ulong_t driver_data;__u32 override_only;
};
结构中成员名称意义
vendor供应商ID
device设备ID
subvendor子系统供应商ID
subdevice子系统设备ID
class设备类、子类和“接口”。大多数驱动程序不需要指定 class/class_mask,因为供应商/设备通常就足够了。
class_mask限制比较类字段的哪些子字段。
driver_data驱动程序私有的数据。大多数驱动程序不需要使用 driver_data 字段。最佳实践是使用 driver_data 作为等效设备类型的静态列表的索引,而不是将其用作指针。
override_only仅当 dev->driver_override 是该驱动程序时才匹配。

如何查找PCI设备

  1. 按供应商和设备 ID 搜索
struct pci_dev *dev = NULL;
while (dev = pci_get_device(VENDOR_ID, DEVICE_ID, dev))configure_device(dev);
  1. 按类ID搜索
pci_get_class(CLASS_ID, dev)
  1. 按供应商/设备和子系统供应商/设备ID进行搜索
pci_get_subsys(VENDOR_ID,DEVICE_ID, SUBSYS_VENDOR_ID, SUBSYS_DEVICE_ID, dev)

存取PCI配置空间

读配置空间APIs

int pci_bus_read_config_byte(struct pci_bus *bus, unsigned int devfn,  int where, u8 *val);
int pci_bus_read_config_word(struct pci_bus *bus, unsigned int devfn, int where, u16 *val);
int pci_bus_read_config_dword(struct pci_bus *bus, unsigned int devfn,int where, u32 *val);

写配置空间APIs

int pci_bus_write_config_byte(struct pci_bus *bus, unsigned int devfn,int where, u8 val);
int pci_bus_write_config_word(struct pci_bus *bus, unsigned int devfn, int where, u16 val);
int pci_bus_write_config_dword(struct pci_bus *bus, unsigned int devfn, int where, u32 val);

where的常量值

linux/pci_regs.h包含所有配置空间位置的常量定义。

共用部分

#define PCI_VENDOR_ID           0x00    /* 16 bits */
#define PCI_DEVICE_ID           0x02    /* 16 bits */
#define PCI_COMMAND             0x04    /* 16 bits */#define PCI_STATUS              0x06    /* 16 bits */
#define PCI_CLASS_REVISION      0x08    /* High 24 bits are class, low 8 revision */
#define PCI_REVISION_ID         0x08    /* Revision ID */#define PCI_CACHE_LINE_SIZE     0x0c    /* 8 bits */
#define PCI_LATENCY_TIMER       0x0d    /* 8 bits */
#define PCI_HEADER_TYPE         0x0e    /* 8 bits */
#define PCI_BIST                0x0f    /* 8 bits */#define PCI_BASE_ADDRESS_0      0x10    /* 32 bits */
#define PCI_BASE_ADDRESS_1      0x14    /* 32 bits [htype 0,1 only] */

类型0

/* Header type 0 (normal devices) */
#define PCI_BASE_ADDRESS_2      0x18    /* 32 bits [htype 0 only] */
#define PCI_BASE_ADDRESS_3      0x1c    /* 32 bits */
#define PCI_BASE_ADDRESS_4      0x20    /* 32 bits */
#define PCI_BASE_ADDRESS_5      0x24    /* 32 bits */#define PCI_CARDBUS_CIS         0x28
#define PCI_SUBSYSTEM_VENDOR_ID 0x2c
#define PCI_SUBSYSTEM_ID        0x2e
#define PCI_ROM_ADDRESS         0x30    /* Bits 31..11 are address, 10..1 reserved */#define PCI_CAPABILITY_LIST     0x34    /* Offset of first capability list entry *//* 0x35-0x3b are reserved */#define PCI_INTERRUPT_LINE      0x3c    /* 8 bits */
#define PCI_INTERRUPT_PIN       0x3d    /* 8 bits */
#define PCI_MIN_GNT             0x3e    /* 8 bits */
#define PCI_MAX_LAT             0x3f    /* 8 bits */

类型1

/* Header type 1 (PCI-to-PCI bridges) */
#define PCI_PRIMARY_BUS         0x18    /* Primary bus number */
#define PCI_SECONDARY_BUS       0x19    /* Secondary bus number */
#define PCI_SUBORDINATE_BUS     0x1a    /* Highest bus number behind the bridge */
#define PCI_SEC_LATENCY_TIMER   0x1b    /* Latency timer for secondary interface */
#define PCI_IO_BASE             0x1c    /* I/O range behind the bridge */
#define PCI_IO_LIMIT            0x1d
#define PCI_SEC_STATUS          0x1e    /* Secondary status register, only bit 14 used */
#define PCI_MEMORY_BASE         0x20    /* Memory range behind */
#define PCI_MEMORY_LIMIT        0x22
#define PCI_PREF_MEMORY_BASE    0x24    /* Prefetchable memory range behind */
#define PCI_PREF_MEMORY_LIMIT   0x26
#define PCI_PREF_BASE_UPPER32   0x28    /* Upper half of prefetchable memory range */
#define PCI_PREF_LIMIT_UPPER32  0x2c
#define PCI_IO_BASE_UPPER16     0x30    /* Upper half of I/O addresses */
#define PCI_IO_LIMIT_UPPER16    0x32
#define PCI_ROM_ADDRESS1        0x38    /* Same as PCI_ROM_ADDRESS, but for htype 1 */
#define PCI_BRIDGE_CONTROL      0x3e

这篇关于如何编写Linux PCI设备驱动器 之一的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1144778

相关文章

ElasticSearch+Kibana通过Docker部署到Linux服务器中操作方法

《ElasticSearch+Kibana通过Docker部署到Linux服务器中操作方法》本文介绍了Elasticsearch的基本概念,包括文档和字段、索引和映射,还详细描述了如何通过Docker... 目录1、ElasticSearch概念2、ElasticSearch、Kibana和IK分词器部署

Linux流媒体服务器部署流程

《Linux流媒体服务器部署流程》文章详细介绍了流媒体服务器的部署步骤,包括更新系统、安装依赖组件、编译安装Nginx和RTMP模块、配置Nginx和FFmpeg,以及测试流媒体服务器的搭建... 目录流媒体服务器部署部署安装1.更新系统2.安装依赖组件3.解压4.编译安装(添加RTMP和openssl模块

linux下多个硬盘划分到同一挂载点问题

《linux下多个硬盘划分到同一挂载点问题》在Linux系统中,将多个硬盘划分到同一挂载点需要通过逻辑卷管理(LVM)来实现,首先,需要将物理存储设备(如硬盘分区)创建为物理卷,然后,将这些物理卷组成... 目录linux下多个硬盘划分到同一挂载点需要明确的几个概念硬盘插上默认的是非lvm总结Linux下多

如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别详解

《如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别详解》:本文主要介绍如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别的相关资料,描述了如何使用海康威视设备网络SD... 目录前言开发流程问题和解决方案dll库加载不到的问题老旧版本sdk不兼容的问题关键实现流程总结前言作为

linux进程D状态的解决思路分享

《linux进程D状态的解决思路分享》在Linux系统中,进程在内核模式下等待I/O完成时会进入不间断睡眠状态(D状态),这种状态下,进程无法通过普通方式被杀死,本文通过实验模拟了这种状态,并分析了如... 目录1. 问题描述2. 问题分析3. 实验模拟3.1 使用losetup创建一个卷作为pv的磁盘3.

Linux环境变量&&进程地址空间详解

《Linux环境变量&&进程地址空间详解》本文介绍了Linux环境变量、命令行参数、进程地址空间以及Linux内核进程调度队列的相关知识,环境变量是系统运行环境的参数,命令行参数用于传递给程序的参数,... 目录一、初步认识环境变量1.1常见的环境变量1.2环境变量的基本概念二、命令行参数2.1通过命令编程

Linux之进程状态&&进程优先级详解

《Linux之进程状态&&进程优先级详解》文章介绍了操作系统中进程的状态,包括运行状态、阻塞状态和挂起状态,并详细解释了Linux下进程的具体状态及其管理,此外,文章还讨论了进程的优先级、查看和修改进... 目录一、操作系统的进程状态1.1运行状态1.2阻塞状态1.3挂起二、linux下具体的状态三、进程的

Linux编译器--gcc/g++使用方式

《Linux编译器--gcc/g++使用方式》文章主要介绍了C/C++程序的编译过程,包括预编译、编译、汇编和链接四个阶段,并详细解释了每个阶段的作用和具体操作,同时,还介绍了调试和发布版本的概念... 目录一、预编译指令1.1预处理功能1.2指令1.3问题扩展二、编译(生成汇编)三、汇编(生成二进制机器语

Rsnapshot怎么用? 基于Rsync的强大Linux备份工具使用指南

《Rsnapshot怎么用?基于Rsync的强大Linux备份工具使用指南》Rsnapshot不仅可以备份本地文件,还能通过SSH备份远程文件,接下来详细介绍如何安装、配置和使用Rsnaps... Rsnapshot 是一款开源的文件系统快照工具。它结合了 Rsync 和 SSH 的能力,可以帮助你在 li

Linux部署jar包过程

《Linux部署jar包过程》文章介绍了在Linux系统上部署Java(jar)包时需要注意的几个关键点,包括统一JDK版本、添加打包插件、修改数据库密码以及正确执行jar包的方法... 目录linux部署jar包1.统一jdk版本2.打包插件依赖3.修改密码4.执行jar包总结Linux部署jar包部署