【anaconda 环境搭建】环境搭建python快速30分钟

2024-09-07 07:48

本文主要是介绍【anaconda 环境搭建】环境搭建python快速30分钟,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1、下载anaconda
https://repo.anaconda.com/archive/index.html

选择下载 Anaconda3-2019.10-Linux-x86_64.sh
在这里插入图片描述

2、安装linux 工具4个,上传,下载,解压,打包
yum install zip
yum install unzip
yum install lrzsz
Yum install wget

3、rz Anaconda3-2019.10-Linux-x86_64.sh
4、安装 bash Anaconda3-2019.10-Linux-x86_64.sh
一直按回车,直到出现yes,按yes,然后继续按回车,默认安装路径,初始化提升 也按yes.然后就安装成功了。

修改~/.bashrc
export PATH=/root/anaconda3/bin:$PATH
source ~/.bashrc

5、接下来配置清华镜像源。
cd ~
mkdir ~/.pip
cd ~/.pip
vim pip.conf
写入如下内容:
[global]
timeout = 6000
index-url = https://pypi.tuna.tsinghua.edu.cn/simple
trusted-host = pypi.tuna.tsinghua.edu.cn

换源成功。重新进入AI算法服务器

6、接下来 安装 python3.7.5环境以及安装依赖包,默认是3.7.4版本 ,这里我们需要安装python3.7.5

创建环境 conda create -n model python==3.7.5
激活环境 conda activate model
退出环境 conda deactivate

安装成功!

7、接下来进入python3.7.5环境,安装所需依赖包
先激活环境 conda activate model
在这里插入图片描述

进入model 环境之后,安装依赖包。用pip 命令安装即可。

pip install requests
pip install gunicorn==20.0.4
pip install uvicorn==0.11.3           
pip install uvloop==0.14.0
pip install fastapi==0.52.0
pip install xgboost==0.90
pip install xlrd==1.2.0
pip install scikit-learn==0.22.1
pip install joblib==0.14.1
pip install pandas==0.25.3
pip install tensorflow==2.0.0
pip install keras==2.3.1
pip install lightgbm==2.3.1
pip install pillow==8.0.1
pip install opencv-python==4.4.0.46
pip install uuid
pip install kafka
pip install kafka_python
pip install pymysql
pip install psycopg2-binary
pip install apscheduler

8.也可以直接克隆 之前的虚拟环境。

conda env create -f model.yml

model.yml 内容如下:

name: model
channels:- defaults
dependencies:- _libgcc_mutex=0.1=main- ca-certificates=2022.3.29- certifi=2021.10.8- libedit=3.1.20210910- libffi=3.2.1- libgcc-ng=9.1.0- libstdcxx-ng=9.1.0- ncurses=6.3- openssl=1.1.1n- pip=21.2.2- python=3.7.5- readline=7.0- setuptools=61.2.0- sqlite=3.33.0- tk=8.6.11- wheel=0.37.1- xz=5.2.5- zlib=1.2.12- pip:- absl-py==1.0.0- apscheduler==3.9.1- astor==0.8.1- backports-zoneinfo==0.2.1- cached-property==1.5.2- cachetools==4.2.4- charset-normalizer==2.0.12- click==7.1.2- cython==0.29.32- dbutils==3.0.2- fastapi==0.52.0- gast==0.2.2- google-auth==1.35.0- google-auth-oauthlib==0.4.6- google-pasta==0.2.0- greenlet==1.1.2- grpcio==1.45.0- gunicorn==20.0.4- h11==0.9.0- h2==2.6.2- h5py==3.6.0- hpack==3.0.0- httptools==0.1.2- hyper==0.7.0- hyperframe==3.2.0- idna==3.3- importlib-metadata==4.11.3- joblib==0.14.1- kafka==1.3.5- kafka-python==2.0.2- keras==2.3.1- keras-applications==1.0.8- keras-preprocessing==1.1.2- ksql==0.10.2- lightgbm==2.3.1- markdown==3.3.6- numpy==1.21.6- oauthlib==3.2.0- opencv-python==4.4.0.46- opt-einsum==3.3.0- pandas==0.25.3- pillow==8.0.1- protobuf==3.20.1- psycopg2-binary==2.9.3- pyasn1==0.4.8- pyasn1-modules==0.2.8- pydantic==1.9.0- pymysql==1.0.2- python-dateutil==2.8.2- pytz==2022.1- pytz-deprecation-shim==0.1.0.post0- pyyaml==6.0- requests==2.27.1- requests-oauthlib==1.3.1- rsa==4.8- scikit-learn==0.22.1- scipy==1.7.3- six==1.16.0- sqlalchemy==1.4.39- starlette==0.13.2- tensorboard==2.0.2- tensorflow==2.0.0- tensorflow-estimator==2.0.1- termcolor==1.1.0- typing-extensions==4.2.0- tzdata==2022.1- tzlocal==4.2- urllib3==1.26.9- uuid==1.30- uvicorn==0.11.3- uvloop==0.14.0- websockets==8.1- werkzeug==2.1.1- wrapt==1.14.0- xgboost==0.90- xlrd==1.2.0- zipp==3.8.0
prefix: /root/anaconda3/envs/model

这篇关于【anaconda 环境搭建】环境搭建python快速30分钟的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1144491

相关文章

python安装whl包并解决依赖关系的实现

《python安装whl包并解决依赖关系的实现》本文主要介绍了python安装whl包并解决依赖关系的实现,文中通过图文示例介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 目录一、什么是whl文件?二、我们为什么需要使用whl文件来安装python库?三、我们应该去哪儿下

Python脚本实现图片文件批量命名

《Python脚本实现图片文件批量命名》这篇文章主要为大家详细介绍了一个用python第三方库pillow写的批量处理图片命名的脚本,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下... 目录前言源码批量处理图片尺寸脚本源码GUI界面源码打包成.exe可执行文件前言本文介绍一个用python第三方库pi

Python中多线程和多进程的基本用法详解

《Python中多线程和多进程的基本用法详解》这篇文章介绍了Python中多线程和多进程的相关知识,包括并发编程的优势,多线程和多进程的概念、适用场景、示例代码,线程池和进程池的使用,以及如何选择合适... 目录引言一、并发编程的主要优势二、python的多线程(Threading)1. 什么是多线程?2.

Python爬虫selenium验证之中文识别点选+图片验证码案例(最新推荐)

《Python爬虫selenium验证之中文识别点选+图片验证码案例(最新推荐)》本文介绍了如何使用Python和Selenium结合ddddocr库实现图片验证码的识别和点击功能,感兴趣的朋友一起看... 目录1.获取图片2.目标识别3.背景坐标识别3.1 ddddocr3.2 打码平台4.坐标点击5.图

Python自动化Office文档处理全攻略

《Python自动化Office文档处理全攻略》在日常办公中,处理Word、Excel和PDF等Office文档是再常见不过的任务,手动操作这些文档不仅耗时耗力,还容易出错,幸运的是,Python提供... 目录一、自动化处理Word文档1. 安装python-docx库2. 读取Word文档内容3. 修改

Python重命名文件并移动到对应文件夹

《Python重命名文件并移动到对应文件夹》在日常的文件管理和处理过程中,我们可能会遇到需要将文件整理到不同文件夹中的需求,下面我们就来看看如何使用Python实现重命名文件并移动到对应文件夹吧... 目录检查并删除空文件夹1. 基本需求2. 实现代码解析3. 代码解释4. 代码执行结果5. 总结方法补充在

Python自动化办公之合并多个Excel

《Python自动化办公之合并多个Excel》在日常的办公自动化工作中,尤其是处理大量数据时,合并多个Excel表格是一个常见且繁琐的任务,下面小编就来为大家介绍一下如何使用Python轻松实现合... 目录为什么选择 python 自动化目标使用 Python 合并多个 Excel 文件安装所需库示例代码

Python使用Pandas对比两列数据取最大值的五种方法

《Python使用Pandas对比两列数据取最大值的五种方法》本文主要介绍使用Pandas对比两列数据取最大值的五种方法,包括使用max方法、apply方法结合lambda函数、函数、clip方法、w... 目录引言一、使用max方法二、使用apply方法结合lambda函数三、使用np.maximum函数

shell脚本自动删除30天以前的文件(最新推荐)

《shell脚本自动删除30天以前的文件(最新推荐)》该文章介绍了如何使用Shell脚本自动删除指定目录下30天以前的文件,并通过crontab设置定时任务,此外,还提供了如何使用Shell脚本删除E... 目录shell脚本自动删除30天以前的文件linux按照日期定时删除elasticsearch索引s

Python调用Orator ORM进行数据库操作

《Python调用OratorORM进行数据库操作》OratorORM是一个功能丰富且灵活的PythonORM库,旨在简化数据库操作,它支持多种数据库并提供了简洁且直观的API,下面我们就... 目录Orator ORM 主要特点安装使用示例总结Orator ORM 是一个功能丰富且灵活的 python O