Ollama—87.4k star 的开源大模型服务框架!!

2024-09-07 06:44

本文主要是介绍Ollama—87.4k star 的开源大模型服务框架!!,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

这一年来,AI 发展的越来越快,大模型使用的门槛也越来越低,每个人都可以在自己的本地运行大模型。今天再给大家介绍一个最厉害的开源大模型服务框架——ollama。

项目介绍

Ollama 是一个开源的大语言模型(LLM)服务工具,它允许用户在本地环境快速实验、管理和部署大型语言模型。它支持多种流行的开源大型语言模型,如 Llama 3.1、Phi 3、Mistral、Gemma 2 等,并且可以通过命令行界面轻松下载、运行和管理这些模型。

Ollama 的出现是为了降低使用大型语言模型的门槛,是让大型语言模型更加普及和易于访问。

项目安装

既然说到要降低门槛,Ollama 的安装也自然是非常的方便了。

Ollama 支持 macOS、Windows 和 Linux 操作系统,同时也提供了 Docker 镜像,方便在不同环境中部署。

  • macOS: 可以通过 Homebrew 安装,使用命令 brew install ollama。也可以直接下载安装包运行。

  • Windows: 需要下载安装包并运行。

  • Linux: 可以通过包管理器或使用命令 curl -fsSL ``https://ollama.com/install.sh`` | sh安装。

  • Docker: 可以使用 docker pull ollama/ollama 命令拉取镜像,并运行容器。

这里以 macOS 为例,下载了 ollama 的安装包后,直接双击运行这个可爱羊驼的应用,程序会提示你将应用移动到 application 文件夹,并且有后续的提示操作,我们按照指引去安装就可以了。

图片

图片

项目使用

安装完成后,我们可以直接执行 ollama 应用启动,也可以在命令行中执行 ollama serve 来启动 Ollama 服务。

当然,现在的我们主要在命令行中去操作 ollama。

执行 ollama list:可以列出已下载的模型,如图:

图片

执行 ollama pull <model> 可以从远程仓库拉取模型。

执行 ollama run <model> 可以运行指定的模型,我们使用 ollama run llama3:8b 来运行已经安装的模型,并且开始对话,如图:

图片

web 界面

如果都是用命令行交互,还是挺麻烦的。这里再给大家介绍一个好用的 ollama 的 web 界面:open-webui。

这也是一个开源项目,我们可以使用 docker 来快速部署:

docker run -d -p 3000:8080 --add-host=host.docker.internal:host-gateway -v open-webui:/app/backend/data --name open-webui --restart always ghcr.io/open-webui/open-webui:main

之后在浏览器访问 localhost:3000,可以打开一个和 ChatGPT 很像的页面:

图片

点击上方的“选择一个模型”,便可以看到 ollama 中已经下载的模型,选中后直接开启聊天就可以啦。

图片

总结

Ollama 是一个功能强大且易于使用的工具,它为本地部署和运行大型语言模型提供了一个简单而有效的方法。无论是研究、开发还是日常使用,Ollama 都能满足用户对大型语言模型的需求。Ollama 拥有庞大的社区用户和相关的开源项目,配合 open-webui,我们可以更好的使用 Ollama,并为朋友们提供一个类似于 ChatGPT 的对话界面。

感兴趣的朋友们,赶紧去试试吧。

项目地址:
https://github.com/ollama/ollama
https://github.com/open-webui/open-webui

这篇关于Ollama—87.4k star 的开源大模型服务框架!!的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1144350

相关文章

基于Flask框架添加多个AI模型的API并进行交互

《基于Flask框架添加多个AI模型的API并进行交互》:本文主要介绍如何基于Flask框架开发AI模型API管理系统,允许用户添加、删除不同AI模型的API密钥,感兴趣的可以了解下... 目录1. 概述2. 后端代码说明2.1 依赖库导入2.2 应用初始化2.3 API 存储字典2.4 路由函数2.5 应

Python GUI框架中的PyQt详解

《PythonGUI框架中的PyQt详解》PyQt是Python语言中最强大且广泛应用的GUI框架之一,基于Qt库的Python绑定实现,本文将深入解析PyQt的核心模块,并通过代码示例展示其应用场... 目录一、PyQt核心模块概览二、核心模块详解与示例1. QtCore - 核心基础模块2. QtWid

Linux上设置Ollama服务配置(常用环境变量)

《Linux上设置Ollama服务配置(常用环境变量)》本文主要介绍了Linux上设置Ollama服务配置(常用环境变量),Ollama提供了多种环境变量供配置,如调试模式、模型目录等,下面就来介绍一... 目录在 linux 上设置环境变量配置 OllamPOgxSRJfa手动安装安装特定版本查看日志在

Ollama Python 使用小结

《OllamaPython使用小结》Ollama提供了PythonSDK,使得开发者能够在Python环境中轻松集成和使用本地运行的模型进行自然语言处理任务,具有一定的参考价值,感兴趣的可以了解一... 目录安装 python SDK启动本地服务使用 Ollama 的 Python SDK 进行推理自定义客

SpringCloud之LoadBalancer负载均衡服务调用过程

《SpringCloud之LoadBalancer负载均衡服务调用过程》:本文主要介绍SpringCloud之LoadBalancer负载均衡服务调用过程,具有很好的参考价值,希望对大家有所帮助,... 目录前言一、LoadBalancer是什么?二、使用步骤1、启动consul2、客户端加入依赖3、以服务

最新Spring Security实战教程之Spring Security安全框架指南

《最新SpringSecurity实战教程之SpringSecurity安全框架指南》SpringSecurity是Spring生态系统中的核心组件,提供认证、授权和防护机制,以保护应用免受各种安... 目录前言什么是Spring Security?同类框架对比Spring Security典型应用场景传统

国内环境搭建私有知识问答库踩坑记录(ollama+deepseek+ragflow)

《国内环境搭建私有知识问答库踩坑记录(ollama+deepseek+ragflow)》本文给大家利用deepseek模型搭建私有知识问答库的详细步骤和遇到的问题及解决办法,感兴趣的朋友一起看看吧... 目录1. 第1步大家在安装完ollama后,需要到系统环境变量中添加两个变量2. 第3步 “在cmd中

Python结合Flask框架构建一个简易的远程控制系统

《Python结合Flask框架构建一个简易的远程控制系统》这篇文章主要为大家详细介绍了如何使用Python与Flask框架构建一个简易的远程控制系统,能够远程执行操作命令(如关机、重启、锁屏等),还... 目录1.概述2.功能使用系统命令执行实时屏幕监控3. BUG修复过程1. Authorization

无需邀请码!Manus复刻开源版OpenManus下载安装与体验

《无需邀请码!Manus复刻开源版OpenManus下载安装与体验》Manus的完美复刻开源版OpenManus安装与体验,无需邀请码,手把手教你如何在本地安装与配置Manus的开源版OpenManu... Manus是什么?Manus 是 Monica 团队推出的全球首款通用型 AI Agent。Man

Nginx配置系统服务&设置环境变量方式

《Nginx配置系统服务&设置环境变量方式》本文介绍了如何将Nginx配置为系统服务并设置环境变量,以便更方便地对Nginx进行操作,通过配置系统服务,可以使用系统命令来启动、停止或重新加载Nginx... 目录1.Nginx操作问题2.配置系统服android务3.设置环境变量总结1.Nginx操作问题