本文主要是介绍【hive 函数】Hive分析函数和窗口函数,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
拿一个例子来说
数据集:
cookie1,2015-04-10 10:00:02,url2
cookie1,2015-04-10 10:00:00,url1
cookie1,2015-04-10 10:03:04,1url3
cookie1,2015-04-10 10:50:05,url6
cookie1,2015-04-10 11:00:00,url7
cookie1,2015-04-10 10:10:00,url4
cookie1,2015-04-10 10:50:01,url5
cookie2,2015-04-10 10:00:02,url22
cookie2,2015-04-10 10:00:00,url11
cookie2,2015-04-10 10:03:04,1url33
cookie2,2015-04-10 10:50:05,url66
cookie2,2015-04-10 11:00:00,url77
cookie2,2015-04-10 10:10:00,url44
cookie2,2015-04-10 10:50:01,url55
窗口函数
- FIRST_VALUE 取出分组内排序后,截止到当前行,第一个值
- LAST_VALUE 取出分组内排序后,截止到当前行,最后一个值
- LEAD(col, n,DEFAULT) 用于统计窗口内往下第n行的值。第一个参数为列名,第二个参数为往下第n行(可选,默认为1),第三个参数为默认值(当往下第n行为NULL时,取默认值)
- LAG(col,n,DEFAULT) 与lead相反,用于统计窗口内往下第n个值。第一个参数为列名,第二个参数为往上第n行(可选,默认为1)
FIRST_VALUE
取分组内排序后,截止到当前行,第一个值
SELECT cookieid,
createtime,
url,
ROW_NUMBER() OVER(PARTITION BY cookieid ORDER BY createtime) AS rn,
FIRST_VALUE(url) OVER(PARTITION BY cookieid ORDER BY createtime) AS first1
FROM lxw1234; cookieid createtime url rn first1
---------------------------------------------------------
cookie1 2015-04-10 10:00:00 url1 1 url1
cookie1 2015-04-10 10:00:02 url2 2 url1
cookie1 2015-04-10 10:03:04 1url3 3 url1
cookie1 2015-04-10 10:10:00 url4 4 url1
cookie1 2015-04-10 10:50:01 url5 5 url1
cookie1 2015-04-10 10:50:05 url6 6 url1
cookie1 2015-04-10 11:00:00 url7 7 url1
cookie2 2015-04-10 10:00:00 url11 1 url11
cookie2 2015-04-10 10:00:02 url22 2 url11
cookie2 2015-04-10 10:03:04 1url33 3 url11
cookie2 2015-04-10 10:10:00 url44 4 url11
cookie2 2015-04-10 10:50:01 url55 5 url11
cookie2 2015-04-10 10:50:05 url66 6 url11
cookie2 2015-04-10 11:00:00 url77 7 url11
LAST_VALUE
取分组内排序后,截止到当前行,最后一个值
SELECT cookieid,
createtime,
url,
LAST_VALUE(url) OVER(PARTITION BY cookieid) AS last2
FROM lxw1234; cookieid createtime url last2
----------------------------------------------
cookie1 2015-04-10 10:00:02 url2 url5
cookie1 2015-04-10 10:00:00 url1 url5
cookie1 2015-04-10 10:03:04 1url3 url5
cookie1 2015-04-10 10:50:05 url6 url5
cookie1 2015-04-10 11:00:00 url7 url5
cookie1 2015-04-10 10:10:00 url4 url5
cookie1 2015-04-10 10:50:01 url5 url5
cookie2 2015-04-10 10:00:02 url22 url55
cookie2 2015-04-10 10:00:00 url11 url55
cookie2 2015-04-10 10:03:04 1url33 url55
cookie2 2015-04-10 10:50:05 url66 url55
cookie2 2015-04-10 11:00:00 url77 url55
cookie2 2015-04-10 10:10:00 url44 url55
cookie2 2015-04-10 10:50:01 url55 url55
分析函数
- ROW_NUMBER() 从1开始,按照顺序,生成分组内记录的序列,比如,按照pv降序排列,生成分组内每天的pv名次,ROW_NUMBER()的应用场景非常多,再比如,获取分组内排序第一的记录,获取一个session中的第一条refer等
- RANK() 生成数据项在分组中的排名,排名相等会在名次中留下空位
- DENSE_RANK() 生成数据项在分组中的排名,排名相等会在名次中不会留下空位
- CUME_DIST() 小于等于当前值的行数除以分组内总行数。比如,统计小于等于当前薪水的人数所占总人数的比例
- PERCENT_RANK() 分组内当前行的RANK值-1/分组内 总行数-1
- NTILE(n) 用于将分组数据按照顺序切分成n片,返回当前切片值,如果切片不均匀,默认增加第一个切片的分布。NTILE不支持ROWS BETWEEN,比如NTILE(2) OVER(PARTITION BY cookieid ORDER BY createtime ROWS BETWEEN 3 PERCEDING AND CURRENT ROW)
累计操作:sum
## 创建数据表
create table orders(user_id string,device_id string,user_type string,price float,sales int);## 添加数据orders.txt
zhangsa test1 new 67.1 2
lisi test2 old 43.32 1
wanger test3 new 88.88 3
liliu test4 new 66.0 1
tom test5 new 54.32 1
tomas test6 old 77.77 2
tomson test7 old 88.44 3
tom1 test8 new 56.55 6
tom2 test9 new 88.88 5
tom3 test10 new 66.66 5## 开窗函数案例
selectuser_id,user_type,sales,-- 默认从起点到当前所有重复行sum(sales) over(partition by user_type order by sales asc) as sales_1,-- 从起点到当前所有重复行与sales_1结果相同sum(sales) over(partition by user_type order by sales asc range between unbounded preceding and current row) as sales_2,-- 从起点到当前行,结果与sale_1结果不同sum(sales) over(partition by user_type order by sales asc rows between unbounded preceding and current row) as sales_3,-- 当前行加上往前3行sum(sales) over(partition by user_type order by sales asc rows between 3 preceding and current row) as sales_4,-- 当前范围往上加3行sum(sales) over(partition by user_type order by sales asc range between 3 preceding and current row) as sales_5,-- 当前行+往前3行+往后1行sum(sales) over(partition by user_type order by sales asc rows between 3 preceding and 1 following) as sales_6,--sum(sales) over(partition by user_type order by sales asc range between 3 preceding and 1 following) as sales_7,-- 当前行+之后所有行sum(sales) over(partition by user_type order by sales asc rows between current row and unbounded following) as sales_8,--sum(sales) over(partition by user_type order by sales asc range between current row and unbounded following) as sales_9,-- 分组内所有行sum(sales) over(partition by user_type) as sales_10
fromorders
order byuser_type,sales,user_id;##上述查询结果如下:| user_id | user_type | sales | sales_1 | sales_2 | sales_3 | sales_4 | sales_5 | sales_6 | sales_7 | sales_8 | sales_9 | sales_10 |
|----------|------------|--------|----------|----------|----------|----------|----------|----------|----------|----------|----------|-----------|
| liliu | new | 1 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 22 | 23 | 23 |
| tom | new | 1 | 2 | 2 | 1 | 1 | 2 | 2 | 4 | 23 | 23 | 23 |
| zhangsa | new | 2 | 4 | 4 | 4 | 4 | 4 | 7 | 7 | 21 | 21 | 23 |
| wanger | new | 3 | 7 | 7 | 7 | 7 | 7 | 12 | 7 | 19 | 19 | 23 |
| tom2 | new | 5 | 17 | 17 | 17 | 15 | 15 | 21 | 21 | 11 | 16 | 23 |
| tom3 | new | 5 | 17 | 17 | 12 | 11 | 15 | 16 | 21 | 16 | 16 | 23 |
| tom1 | new | 6 | 23 | 23 | 23 | 19 | 19 | 19 | 19 | 6 | 6 | 23 |
| lisi | old | 1 | 1 | 1 | 1 | 1 | 1 | 3 | 3 | 6 | 6 | 6 |
| tomas | old | 2 | 3 | 3 | 3 | 3 | 3 | 6 | 6 | 5 | 5 | 6 |
| tomson | old | 3 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 3 | 3 | 6 |
注意
RANK、ROW_NUMBER、DENSE_RANK
select
user_id,user_type,sales,
RANK() over (partition by user_type order by sales desc) as r,
ROW_NUMBER() over (partition by user_type order by sales desc) as rn,
DENSE_RANK() over (partition by user_type order by sales desc) as dr
from
orders;##上述查询结果如下| user_id | user_type | sales | r | rn | dr |
| ------- | --------- | ----- | --- | --- | --- |
| tom1 | new | 6 | 1 | 1 | 1 |
| tom3 | new | 5 | 2 | 2 | 2 |
| tom2 | new | 5 | 2 | 3 | 2 |
| wanger | new | 3 | 4 | 4 | 3 |
| zhangsa | new | 2 | 5 | 5 | 4 |
| tom | new | 1 | 6 | 6 | 5 |
| liliu | new | 1 | 6 | 7 | 5 |
| tomson | old | 3 | 1 | 1 | 1 |
| tomas | old | 2 | 2 | 2 | 2 |
| lisi | old | 1 | 3 | 3 | 3 |
这篇关于【hive 函数】Hive分析函数和窗口函数的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!