【hive 函数】Hive分析函数和窗口函数

2024-09-07 06:32
文章标签 分析 函数 窗口 hive

本文主要是介绍【hive 函数】Hive分析函数和窗口函数,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

拿一个例子来说
数据集:

cookie1,2015-04-10 10:00:02,url2  
cookie1,2015-04-10 10:00:00,url1  
cookie1,2015-04-10 10:03:04,1url3  
cookie1,2015-04-10 10:50:05,url6  
cookie1,2015-04-10 11:00:00,url7  
cookie1,2015-04-10 10:10:00,url4  
cookie1,2015-04-10 10:50:01,url5  
cookie2,2015-04-10 10:00:02,url22  
cookie2,2015-04-10 10:00:00,url11  
cookie2,2015-04-10 10:03:04,1url33  
cookie2,2015-04-10 10:50:05,url66  
cookie2,2015-04-10 11:00:00,url77  
cookie2,2015-04-10 10:10:00,url44  
cookie2,2015-04-10 10:50:01,url55  

窗口函数

  1. FIRST_VALUE 取出分组内排序后,截止到当前行,第一个值
  2. LAST_VALUE 取出分组内排序后,截止到当前行,最后一个值
  3. LEAD(col, n,DEFAULT) 用于统计窗口内往下第n行的值。第一个参数为列名,第二个参数为往下第n行(可选,默认为1),第三个参数为默认值(当往下第n行为NULL时,取默认值)
  4. LAG(col,n,DEFAULT) 与lead相反,用于统计窗口内往下第n个值。第一个参数为列名,第二个参数为往上第n行(可选,默认为1)

FIRST_VALUE
取分组内排序后,截止到当前行,第一个值

SELECT cookieid,  
createtime,  
url,  
ROW_NUMBER() OVER(PARTITION BY cookieid ORDER BY createtime) AS rn,  
FIRST_VALUE(url) OVER(PARTITION BY cookieid ORDER BY createtime) AS first1  
FROM lxw1234;  cookieid  createtime            url     rn      first1  
---------------------------------------------------------  
cookie1 2015-04-10 10:00:00     url1    1       url1  
cookie1 2015-04-10 10:00:02     url2    2       url1  
cookie1 2015-04-10 10:03:04     1url3   3       url1  
cookie1 2015-04-10 10:10:00     url4    4       url1  
cookie1 2015-04-10 10:50:01     url5    5       url1  
cookie1 2015-04-10 10:50:05     url6    6       url1  
cookie1 2015-04-10 11:00:00     url7    7       url1  
cookie2 2015-04-10 10:00:00     url11   1       url11  
cookie2 2015-04-10 10:00:02     url22   2       url11  
cookie2 2015-04-10 10:03:04     1url33  3       url11  
cookie2 2015-04-10 10:10:00     url44   4       url11  
cookie2 2015-04-10 10:50:01     url55   5       url11  
cookie2 2015-04-10 10:50:05     url66   6       url11  
cookie2 2015-04-10 11:00:00     url77   7       url11  

LAST_VALUE

取分组内排序后,截止到当前行,最后一个值

SELECT cookieid,  
createtime,  
url,  
LAST_VALUE(url) OVER(PARTITION BY cookieid) AS last2    
FROM lxw1234;  cookieid  createtime            url     last2  
----------------------------------------------  
cookie1 2015-04-10 10:00:02     url2    url5  
cookie1 2015-04-10 10:00:00     url1    url5  
cookie1 2015-04-10 10:03:04     1url3   url5  
cookie1 2015-04-10 10:50:05     url6    url5  
cookie1 2015-04-10 11:00:00     url7    url5  
cookie1 2015-04-10 10:10:00     url4    url5  
cookie1 2015-04-10 10:50:01     url5    url5  
cookie2 2015-04-10 10:00:02     url22   url55  
cookie2 2015-04-10 10:00:00     url11   url55  
cookie2 2015-04-10 10:03:04     1url33  url55  
cookie2 2015-04-10 10:50:05     url66   url55  
cookie2 2015-04-10 11:00:00     url77   url55  
cookie2 2015-04-10 10:10:00     url44   url55  
cookie2 2015-04-10 10:50:01     url55   url55  

分析函数

  1. ROW_NUMBER() 从1开始,按照顺序,生成分组内记录的序列,比如,按照pv降序排列,生成分组内每天的pv名次,ROW_NUMBER()的应用场景非常多,再比如,获取分组内排序第一的记录,获取一个session中的第一条refer等
  2. RANK() 生成数据项在分组中的排名,排名相等会在名次中留下空位
  3. DENSE_RANK() 生成数据项在分组中的排名,排名相等会在名次中不会留下空位
  4. CUME_DIST() 小于等于当前值的行数除以分组内总行数。比如,统计小于等于当前薪水的人数所占总人数的比例
  5. PERCENT_RANK() 分组内当前行的RANK值-1/分组内 总行数-1
  6. NTILE(n) 用于将分组数据按照顺序切分成n片,返回当前切片值,如果切片不均匀,默认增加第一个切片的分布。NTILE不支持ROWS BETWEEN,比如NTILE(2) OVER(PARTITION BY cookieid ORDER BY createtime ROWS BETWEEN 3 PERCEDING AND CURRENT ROW)

累计操作:sum

## 创建数据表
create table orders(user_id string,device_id string,user_type string,price float,sales int);## 添加数据orders.txt
zhangsa test1   new     67.1    2
lisi    test2   old     43.32   1
wanger  test3   new     88.88   3
liliu   test4   new     66.0    1
tom     test5   new     54.32   1
tomas   test6   old     77.77   2
tomson  test7   old     88.44   3
tom1    test8   new     56.55   6
tom2    test9   new     88.88   5
tom3    test10  new     66.66   5## 开窗函数案例
selectuser_id,user_type,sales,-- 默认从起点到当前所有重复行sum(sales) over(partition by user_type order by sales asc) as sales_1,-- 从起点到当前所有重复行与sales_1结果相同sum(sales) over(partition by user_type order by sales asc range between unbounded preceding and current row) as sales_2,-- 从起点到当前行,结果与sale_1结果不同sum(sales) over(partition by user_type order by sales asc rows between unbounded preceding and current row) as sales_3,-- 当前行加上往前3sum(sales) over(partition by user_type order by sales asc rows between 3 preceding and current row) as sales_4,-- 当前范围往上加3sum(sales) over(partition by user_type order by sales asc range between 3 preceding and current row) as sales_5,-- 当前行+往前3行+往后1sum(sales) over(partition by user_type order by sales asc rows between 3 preceding and 1 following) as sales_6,--sum(sales) over(partition by user_type order by sales asc range between 3 preceding and 1 following) as sales_7,-- 当前行+之后所有行sum(sales) over(partition by user_type order by sales asc rows between current row and unbounded following) as sales_8,--sum(sales) over(partition by user_type order by sales asc range between current row and unbounded following) as sales_9,-- 分组内所有行sum(sales) over(partition by user_type) as sales_10
fromorders
order byuser_type,sales,user_id;##上述查询结果如下:| user_id  | user_type  | sales  | sales_1  | sales_2  | sales_3  | sales_4  | sales_5  | sales_6  | sales_7  | sales_8  | sales_9  | sales_10  |
|----------|------------|--------|----------|----------|----------|----------|----------|----------|----------|----------|----------|-----------|
| liliu    | new        | 1      | 2        | 2        | 2        | 2        | 2        | 4        | 4        | 22       | 23       | 23        |
| tom      | new        | 1      | 2        | 2        | 1        | 1        | 2        | 2        | 4        | 23       | 23       | 23        |
| zhangsa  | new        | 2      | 4        | 4        | 4        | 4        | 4        | 7        | 7        | 21       | 21       | 23        |
| wanger   | new        | 3      | 7        | 7        | 7        | 7        | 7        | 12       | 7        | 19       | 19       | 23        |
| tom2     | new        | 5      | 17       | 17       | 17       | 15       | 15       | 21       | 21       | 11       | 16       | 23        |
| tom3     | new        | 5      | 17       | 17       | 12       | 11       | 15       | 16       | 21       | 16       | 16       | 23        |
| tom1     | new        | 6      | 23       | 23       | 23       | 19       | 19       | 19       | 19       | 6        | 6        | 23        |
| lisi     | old        | 1      | 1        | 1        | 1        | 1        | 1        | 3        | 3        | 6        | 6        | 6         |
| tomas    | old        | 2      | 3        | 3        | 3        | 3        | 3        | 6        | 6        | 5        | 5        | 6         |
| tomson   | old        | 3      | 6        | 6        | 6        | 6        | 6        | 6        | 6        | 3        | 3        | 6         |
注意

RANK、ROW_NUMBER、DENSE_RANK

select
user_id,user_type,sales,
RANK() over (partition by user_type order by sales desc) as r,
ROW_NUMBER() over (partition by user_type order by sales desc) as rn,
DENSE_RANK() over (partition by user_type order by sales desc) as dr
from
orders;##上述查询结果如下| user_id | user_type | sales |  r  | rn  | dr  |
| ------- | --------- | ----- | --- | --- | --- |
| tom1    | new       | 6     | 1   | 1   | 1   |
| tom3    | new       | 5     | 2   | 2   | 2   |
| tom2    | new       | 5     | 2   | 3   | 2   |
| wanger  | new       | 3     | 4   | 4   | 3   |
| zhangsa | new       | 2     | 5   | 5   | 4   |
| tom     | new       | 1     | 6   | 6   | 5   |
| liliu   | new       | 1     | 6   | 7   | 5   |
| tomson  | old       | 3     | 1   | 1   | 1   |
| tomas   | old       | 2     | 2   | 2   | 2   |
| lisi    | old       | 1     | 3   | 3   | 3   |

这篇关于【hive 函数】Hive分析函数和窗口函数的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1144318

相关文章

Springboot中分析SQL性能的两种方式详解

《Springboot中分析SQL性能的两种方式详解》文章介绍了SQL性能分析的两种方式:MyBatis-Plus性能分析插件和p6spy框架,MyBatis-Plus插件配置简单,适用于开发和测试环... 目录SQL性能分析的两种方式:功能介绍实现方式:实现步骤:SQL性能分析的两种方式:功能介绍记录

Python itertools中accumulate函数用法及使用运用详细讲解

《Pythonitertools中accumulate函数用法及使用运用详细讲解》:本文主要介绍Python的itertools库中的accumulate函数,该函数可以计算累积和或通过指定函数... 目录1.1前言:1.2定义:1.3衍生用法:1.3Leetcode的实际运用:总结 1.1前言:本文将详

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

轻松上手MYSQL之JSON函数实现高效数据查询与操作

《轻松上手MYSQL之JSON函数实现高效数据查询与操作》:本文主要介绍轻松上手MYSQL之JSON函数实现高效数据查询与操作的相关资料,MySQL提供了多个JSON函数,用于处理和查询JSON数... 目录一、jsON_EXTRACT 提取指定数据二、JSON_UNQUOTE 取消双引号三、JSON_KE

MySQL数据库函数之JSON_EXTRACT示例代码

《MySQL数据库函数之JSON_EXTRACT示例代码》:本文主要介绍MySQL数据库函数之JSON_EXTRACT的相关资料,JSON_EXTRACT()函数用于从JSON文档中提取值,支持对... 目录前言基本语法路径表达式示例示例 1: 提取简单值示例 2: 提取嵌套值示例 3: 提取数组中的值注意

java如何通过Kerberos认证方式连接hive

《java如何通过Kerberos认证方式连接hive》该文主要介绍了如何在数据源管理功能中适配不同数据源(如MySQL、PostgreSQL和Hive),特别是如何在SpringBoot3框架下通过... 目录Java实现Kerberos认证主要方法依赖示例续期连接hive遇到的问题分析解决方式扩展思考总

C#使用DeepSeek API实现自然语言处理,文本分类和情感分析

《C#使用DeepSeekAPI实现自然语言处理,文本分类和情感分析》在C#中使用DeepSeekAPI可以实现多种功能,例如自然语言处理、文本分类、情感分析等,本文主要为大家介绍了具体实现步骤,... 目录准备工作文本生成文本分类问答系统代码生成翻译功能文本摘要文本校对图像描述生成总结在C#中使用Deep

Java function函数式接口的使用方法与实例

《Javafunction函数式接口的使用方法与实例》:本文主要介绍Javafunction函数式接口的使用方法与实例,函数式接口如一支未完成的诗篇,用Lambda表达式作韵脚,将代码的机械美感... 目录引言-当代码遇见诗性一、函数式接口的生物学解构1.1 函数式接口的基因密码1.2 六大核心接口的形态学

Redis主从/哨兵机制原理分析

《Redis主从/哨兵机制原理分析》本文介绍了Redis的主从复制和哨兵机制,主从复制实现了数据的热备份和负载均衡,而哨兵机制可以监控Redis集群,实现自动故障转移,哨兵机制通过监控、下线、选举和故... 目录一、主从复制1.1 什么是主从复制1.2 主从复制的作用1.3 主从复制原理1.3.1 全量复制

Redis主从复制的原理分析

《Redis主从复制的原理分析》Redis主从复制通过将数据镜像到多个从节点,实现高可用性和扩展性,主从复制包括初次全量同步和增量同步两个阶段,为优化复制性能,可以采用AOF持久化、调整复制超时时间、... 目录Redis主从复制的原理主从复制概述配置主从复制数据同步过程复制一致性与延迟故障转移机制监控与维