Kafka的三高设计原理

2024-09-07 05:04
文章标签 设计 原理 kafka 三高

本文主要是介绍Kafka的三高设计原理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1.生产者缓存机制--高性能

生产者缓存机制的主要目的是将消息打包,减少网络IO频率

kafka生产者端存在消息累加器RecordAccumulator,它会对每个Partition维护一个双端队列,队列中消息到达一定数量后 或者 到达一定时间后,通过sender线程批量的将消息发送给kafka服务端。(批量发送)

2.发送应答机制--高可用

发送应发机制保证了消息可以安全到达服务端

Producer端一个不太起眼的属性ACKS_CONFIG:

  • acks = 0,生产者不关心broker的应答;不安全,但是速度快
  • acks = all or -1,生产者需要所有partition的应答;最安全,但是效率低一些
  • acks = 1,生产者只需要Leader partition的应答;中和

3.生产者消息幂等性--高可用

防止消息重复发送到服务端Broker

(解决了单分区发送的问题)

每个Producer发送消息到Broker的时候,会携带<PID,SN>给Broker,PID是该Producer的唯一标识,SN是消息序号。Broker端会维护这个SN的序列号。如果发送端SN<=服务端SN,则重复应答即可;如果发送端SN>服务端SN,则说明发送的消息有丢失!如果发送端SN=服务端SN+1,则正常接收消息。

(多分区发送的幂等性问题需要事务机制来保证)

4.Controller Broker和Leader Partition--高可用

监控作用

基于Zookeeper的Controller选举机制,Controller Broker管理所有Broker的健康状态;

Leader Partition管理该Topic下的所有partition;

当一个broker中存在多个Leader partition的时候,会触发Leader partition的自平衡机制,涉及到大量消息的转移和同步。

5.Partition的故障恢复机制--高可用

保证各partition的数据一致性

  • LEO(Log End Offset): 每个Partition的最后一个Offset
  • HW(High Watermark): 一组Partiton中最小的LEO

当follower partition故障时,该Follower节点会读取本地记录的上一次的HW,将自己的日志中高于HW的部分信息全部删除掉,然后从HW开始,向Leader进行消息同步。

当Leader partition故障时,会选举出新的Leader partition,其他Follower会将各自的Log文件中高于HW的部分全部清理掉,然后从新的Leader中同步数据。

如果follower partition的HW不一致,那kafka通过epoch机制来进行数据同步。

(每个Leader Partition在上任之初,都会新增一个新的Epoch记录。这个记录包含更新后的epoch版本号,以及当前Leader Partition写入的第一个消息的偏移量。接下来其他Follower Partition要更新数据时,就可以不再依靠自己记录的HW值判断拉取消息的起点,而是根据这个最新的epoch条目来同步

6.消息存储--高性能

三个日志文件存储kafka的消息,.log存储实际消息,.index以偏移量为索引,.timeindex以时间戳为索引

.log只可以进行消息顺序写的追加,不支持修改和删除!顺序写的效率很高

.index类似于跳表!<offset,pos>,跳表的查询效率高,redis也用到跳表!

7.零拷贝--高性能

producer发送给broker的消息通过mmap持久化到磁盘;

consumer通过sendfile方式拉取broker的消息;

8.消费者防止消息重新消费--高性能

1)消费者通过订单的id去查看该消息是否已被消费过(消息如果被消费了,则该id已存在)

2)通过redis维持offset,消费时将消息的offset与redis中的offset进行比较

9.kafka消息零丢失方案--高可用

  • 生产者发送消息到broker不丢失:acks = -1或者all;或者1。
  • broker保证消息不丢失:1)配置多备份因子;2)合理刷盘频率
  • 消费者防止异步处理丢失消息:手动提交offset更安全一些

10.消息积压问题--高可用

  1. 如果业务正常,只是因为消费者消费太慢,则增加partition数量,增加消费者数量即可。
  2. 发送消息时,尽量保证消息在各个Partition分布均匀;
  3. 如果业务异常,则降级处理,人工介入分析该问题。

这篇关于Kafka的三高设计原理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1144128

相关文章

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

深入探索协同过滤:从原理到推荐模块案例

文章目录 前言一、协同过滤1. 基于用户的协同过滤(UserCF)2. 基于物品的协同过滤(ItemCF)3. 相似度计算方法 二、相似度计算方法1. 欧氏距离2. 皮尔逊相关系数3. 杰卡德相似系数4. 余弦相似度 三、推荐模块案例1.基于文章的协同过滤推荐功能2.基于用户的协同过滤推荐功能 前言     在信息过载的时代,推荐系统成为连接用户与内容的桥梁。本文聚焦于

hdu4407(容斥原理)

题意:给一串数字1,2,......n,两个操作:1、修改第k个数字,2、查询区间[l,r]中与n互质的数之和。 解题思路:咱一看,像线段树,但是如果用线段树做,那么每个区间一定要记录所有的素因子,这样会超内存。然后我就做不来了。后来看了题解,原来是用容斥原理来做的。还记得这道题目吗?求区间[1,r]中与p互质的数的个数,如果不会的话就先去做那题吧。现在这题是求区间[l,r]中与n互质的数的和

搭建Kafka+zookeeper集群调度

前言 硬件环境 172.18.0.5        kafkazk1        Kafka+zookeeper                Kafka Broker集群 172.18.0.6        kafkazk2        Kafka+zookeeper                Kafka Broker集群 172.18.0.7        kafkazk3

怎么让1台电脑共享给7人同时流畅设计

在当今的创意设计与数字内容生产领域,图形工作站以其强大的计算能力、专业的图形处理能力和稳定的系统性能,成为了众多设计师、动画师、视频编辑师等创意工作者的必备工具。 设计团队面临资源有限,比如只有一台高性能电脑时,如何高效地让七人同时流畅地进行设计工作,便成为了一个亟待解决的问题。 一、硬件升级与配置 1.高性能处理器(CPU):选择多核、高线程的处理器,例如Intel的至强系列或AMD的Ry

基于51单片机的自动转向修复系统的设计与实现

文章目录 前言资料获取设计介绍功能介绍设计清单具体实现截图参考文献设计获取 前言 💗博主介绍:✌全网粉丝10W+,CSDN特邀作者、博客专家、CSDN新星计划导师,一名热衷于单片机技术探索与分享的博主、专注于 精通51/STM32/MSP430/AVR等单片机设计 主要对象是咱们电子相关专业的大学生,希望您们都共创辉煌!✌💗 👇🏻 精彩专栏 推荐订阅👇🏻 单片机

hdu4407容斥原理

题意: 有一个元素为 1~n 的数列{An},有2种操作(1000次): 1、求某段区间 [a,b] 中与 p 互质的数的和。 2、将数列中某个位置元素的值改变。 import java.io.BufferedInputStream;import java.io.BufferedReader;import java.io.IOException;import java.io.Inpu

hdu4059容斥原理

求1-n中与n互质的数的4次方之和 import java.io.BufferedInputStream;import java.io.BufferedReader;import java.io.IOException;import java.io.InputStream;import java.io.InputStreamReader;import java.io.PrintWrit

SprinBoot+Vue网络商城海鲜市场的设计与实现

目录 1 项目介绍2 项目截图3 核心代码3.1 Controller3.2 Service3.3 Dao3.4 application.yml3.5 SpringbootApplication3.5 Vue 4 数据库表设计5 文档参考6 计算机毕设选题推荐7 源码获取 1 项目介绍 博主个人介绍:CSDN认证博客专家,CSDN平台Java领域优质创作者,全网30w+

寻迹模块TCRT5000的应用原理和功能实现(基于STM32)

目录 概述 1 认识TCRT5000 1.1 模块介绍 1.2 电气特性 2 系统应用 2.1 系统架构 2.2 STM32Cube创建工程 3 功能实现 3.1 代码实现 3.2 源代码文件 4 功能测试 4.1 检测黑线状态 4.2 未检测黑线状态 概述 本文主要介绍TCRT5000模块的使用原理,包括该模块的硬件实现方式,电路实现原理,还使用STM32类