本文主要是介绍多表连接的三种方式hash join,merge join,nested loop,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
多表之间的连接有三种方式:Nested Loops,Hash Join和 Sort Merge Join. 下面来介绍三种不同连接的不同:
一. NESTED LOOP:
对于被连接的数据子集较小的情况,嵌套循环连接是个较好的选择。在嵌套循环中,内表被外表驱动,外表返回的每一行都要在内表中检索找到与它匹配的行,因此整个查询返回的结果集不能太大(大于1 万不适合),要把返回子集较小表的作为外表(CBO 默认外表是驱动表),而且在内表的连接字段上一定要有索引。当然也可以用ORDERED 提示来改变CBO默认的驱动表,使用USE_NL(table_name1 table_name2)可是强制CBO执行嵌套循环连接。
Nested loop一般用在连接的表中有索引,并且索引选择性较好的时候.
步骤:确定一个驱动表(outer table),另一个表为inner table,驱动表中的每一行与inner表中的相应记录JOIN。类似一个嵌套的循环。适用于驱动表的记录集比较小(<10000)而且inner表需要有有效的访问方法(Index)。需要注意的是:JOIN的顺序很重要,驱动表的记录集一定要小,返回结果集的响应时间是最快的。
cost = outer access cost + (inner access cost * outer cardinality)
| 2 | NESTED LOOPS | | 3 | 141 | 7 (15)|
| 3 | TABLE ACCESS FULL | EMPLOYEES | 3 | 60 | 4 (25)|
| 4 | TABLE ACCESS BY INDEX ROWID| JOBS | 19 | 513 | 2 (50)|
| 5 | INDEX UNIQUE SCAN | JOB_ID_PK | 1 | | |
EMPLOYEES为outer table, JOBS为inner table.
二. HASH JOIN :
散列连接是CBO 做大数据集连接时的常用方式,优化器使用两个表中较小的表(或数据源)利用连接键在内存中建立散列表,然后扫描较大的表并探测散列表,找出与散列表匹配的行。
这种方式适用于较小的表完全可以放于内存中的情况,这样总成本就是访问两个表的成本之和。但是在表很大的情况下并不能完全放入内存,这时优化器会将它分割成若干不同的分区,不能放入内存的部分就把该分区写入磁盘的临时段,此时要有较大的临时段从而尽量提高I/O 的性能。
也可以用USE_HASH(table_name1 table_name2)提示来强制使用散列连接。如果使用散列连接HASH_AREA_SIZE 初始化参数必须足够的大,如果是9i,Oracle建议使用SQL工作区自动管理,设置WORKAREA_SIZE_POLICY 为AUTO,然后调整PGA_AGGREGATE_TARGET 即可。
Hash join在两个表的数据量差别很大的时候.
步骤:将两个表中较小的一个在内存中构造一个HASH表(对JOIN KEY),扫描另一个表,同样对JOIN KEY进行HASH后探测是否可以JOIN。适用于记录集比较大的情况。需要注意的是:如果HASH表太大,无法一次构造在内存中,则分成若干个partition,写入磁盘的temporary segment,则会多一个写的代价,会降低效率。
cost = (outer access cost * # of hash partitions) + inner access cost
--------------------------------------------------------------------------
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)|
--------------------------------------------------------------------------
| 0 | SELECT STATEMENT | | 665 | 13300 | 8 (25)|
| 1 | HASH JOIN | | 665 | 13300 | 8 (25)|
| 2 | TABLE ACCESS FULL | ORDERS | 105 | 840 | 4 (25)|
| 3 | TABLE ACCESS FULL | ORDER_ITEMS | 665 | 7980 | 4 (25)|
--------------------------------------------------------------------------
ORDERS为HASH TABLE,ORDER_ITEMS扫描
三.SORT MERGE JOIN
通常情况下散列连接的效果都比排序合并连接要好,然而如果行源已经被排过序,在执行排序合并连接时不需要再排序了,这时排序合并连接的性能会优于散列连接。可以使用USE_MERGE(table_name1 table_name2)来强制使用排序合并连接.
Sort Merge join 用在没有索引,并且数据已经排序的情况.
cost = (outer access cost * # of hash partitions) + inner access cost
步骤:将两个表排序,然后将两个表合并。通常情况下,只有在以下情况发生时,才会使用此种JOIN方式:
1.RBO模式
2.不等价关联(>,<,>=,<=,<>)
3.HASH_JOIN_ENABLED=false
4.数据源已排序
四. 三种连接工作方式比较:
Hash join的工作方式是将一个表(通常是小一点的那个表)做hash运算,将列数据存储到hash列表中,从另一个表中抽取记录,做hash运算,到hash 列表中找到相应的值,做匹配。
Nested loops 工作方式是从一张表中读取数据,访问另一张表(通常是索引)来做匹配,nested loops适用的场合是当一个关联表比较小的时候,效率会更高。
Merge Join 是先将关联表的关联列各自做排序,然后从各自的排序表中抽取数据,到另一个排序表中做匹配,因为merge join需要做更多的排序,所以消耗的资源更多。 通常来讲,能够使用merge join的地方,hash join都可以发挥更好的性能。
几种方式的操作方式
merge join
merge join的操作通常分三步:
1、对连接的每个表做table access full;
2、对table access full的结果进行排序。
3、进行merge join对排序结果进行合并。
在全表扫描比索引范围扫描再通过rowid进行表访问更可取的情况下,merge join会比nested loops性能更佳。当表特别小或特别巨大的时候,实行全表访问可能会比索引范围扫描更有效。mrege join的性能开销几乎都在前两步。
hash join
对两个表进行全表扫描,然后oracle读取涉及连接的其中一个表,并且在内存里创建来自表的连接列的唯一关键字的位图。当读取和处理第二个表的行时,创建值的位图被用做过滤器。如果一个行成功的通过位图过滤,则hash算法用于数据查找和后来的连接。(这里涉及数学问题,我也弄的不是很清楚)。
以下条件下hash join可能有优势:
两个巨大的表之间的连接。
在一个巨大的表和一个小表之间的连接。
Nested Loops
会循环外表(驱动表),逐个比对和内表的连接是否符合条件。在驱动表比较小,内表比较大,而且内外表的连接列有索引的时候比较好。当SORT_AREA空间不足的时候,Oracle也会选择使用NL。基于Cost的Oracle优化器(CBO)会自动选择较小的表做外表。
这篇关于多表连接的三种方式hash join,merge join,nested loop的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!