2024高教社杯全国大学生数学建模竞赛C题原创python代码

本文主要是介绍2024高教社杯全国大学生数学建模竞赛C题原创python代码,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

2024高教社杯全国大学生数学建模竞赛C题原创python代码

C题题目:农作物的种植策略

思路可以参考我主页之前的文章

以下均为python代码,推荐用anaconda中的notebook当作编译环境

from gurobipy import Model
import pandas as pd
import gurobipy as gp
from gurobipy import GRB
import numpy as np# 读取execl数据
data1 = pd.read_excel('附件1-乡村现有耕地和农作物的基本情况.xlsx')
data2 = pd.read_excel('附件2-2023 年乡村农作物种植和相关统计数据.xlsx')
# 读取execl数据的表2
data11 = pd.read_excel('附件1-乡村现有耕地和农作物的基本情况.xlsx',sheet_name='乡村种植的农作物')
data22 = pd.read_excel('附件2-2023 年乡村农作物种植和相关统计数据.xlsx',sheet_name='2023年统计的相关数据')
# 显示前十个数据
data1.head(10)

# 地块数据
land_data = {"地块名称":['A1', 'A2', 'A3', 'A4', 'A5', 'A6', 'B1', 'B2', 'B3', 'B4', 'B5', 'B6', 'B7', 'B8', 'B9', 'B10', 'B11', 'B12', 'B13', 'B14', 'C1', 'C2', 'C3', 'C4', 'C5', 'C6', 'D1', 'D2', 'D3', 'D4', 'D5', 'D6', 'D7', 'D8', 'E1', 'E2', 'E3', 'E4', 'E5', 'E6', 'E7', 'E8', 'E9', 'E10', 'E11', 'E12', 'E13', 'E14', 'E15', 'E16', 'F1', 'F2', 'F3', 'F4'],"地块类型":["平旱地"]*6 + ["梯田"]*14 + ["山坡地"]*6 + ["水浇地"]*8 + ["普通大棚"]*16 + ["智慧大棚"]*4,
}
land_df = pd.DataFrame(land_data)
# 在land_df中添加地块面积data1['地块面积/亩']
land_df['地块面积/亩'] = data1['地块面积/亩']
land_df# 作物数据
# 从data11中获取作物名称和作物编号作为crop_data
crop_data = {"作物名称":data11['作物名称'],"作物编号":data11['作物编号'],"作物类型":data11['作物类型']
}
crop_df = pd.DataFrame(crop_data)
crop_df

# 创建地块名称的列表
land = data1['地块名称'].tolist()
# 创建地块面积的列表
area = data1['地块面积/亩'].tolist()
# 创建作物名称的列表,去重
crop = list(set(data2['作物名称'].tolist()))# 根据作物名称设计一个字典,key是作物名称,value是data11中作物编号和作物种类和种植耕地的列表
crop_dict = {}
for i in range(len(data11)):crop_dict[data11['作物名称'][i]] = [data11['作物编号'][i],data11['作物类型'][i],data11['种植耕地'][i]]
# 显示crop_dict
print(crop_dict)

data24 = pd.read_excel('附件2-2023 年乡村农作物种植和相关统计数据.xlsx', sheet_name='2023的农作物种植情况汇总')
data24

# data24的销售单价1和销售单价2取平均值,作为销售单价
data24['销售单价'] = (data24['销售单价1/(元/斤)']+data24['销售单价2/(元/斤)'])/2# 将作物名称作为索引,销售单价作为值,创建一个字典
price_dict = data24.set_index('作物名称')['销售单价'].to_dict()
# 将作物名称作为索引,种植成本/(元/亩)作为值,创建一个字典
cost_dict = data24.set_index('作物名称')['种植成本/(元/亩)'].to_dict()
# 将作物名称作为索引,亩产量/斤作为值,创建一个字典
yield_dict = data24.set_index('作物名称')['亩产量/斤'].to_dict()
# 将地块名称作为索引,地块面积/亩作为值,创建一个字典
area_dict = data1.set_index('地块名称')['地块面积/亩'].to_dict()# 创建模型
model = gp.Model("crop_optimization")# 定义决策变量
crop_fields = ['A1', 'A2', 'A3', 'A4', 'A5', 'A6', 'B1', 'B2', 'B3', 'B4', 'B5', 'B6', 'B7', 'B8', 'B9', 'B10', 'B11', 'B12', 'B13', 'B14', 'C1', 'C2', 'C3', 'C4', 'C5', 'C6', 'D1', 'D2', 'D3', 'D4', 'D5', 'D6', 'D7', 'D8', 'E1', 'E2', 'E3', 'E4', 'E5', 'E6', 'E7', 'E8', 'E9', 'E10', 'E11', 'E12', 'E13', 'E14', 'E15', 'E16', 'F1', 'F2', 'F3', 'F4']
crops = ['黄豆', '黑豆', '红豆', '绿豆', '爬豆', '小麦', '玉米', '谷子', '高粱', '黍子', '荞麦', '南瓜', '红薯', '莜麦', '大麦', '水稻', '豇豆', '刀豆', '芸豆', '土豆', '西红柿', '茄子', '菠菜', '青椒', '菜花', '包菜', '油麦菜', '小青菜', '黄瓜', '生菜', '辣椒', '空心菜', '黄心菜', '芹菜', '大白菜', '白萝卜', '红萝卜', '榆黄菇', '香菇', '白灵菇', '羊肚菌']
seasons = ['第一季', '第二季']
x = model.addVars(crop_fields, crops, seasons, vtype=GRB.INTEGER, name="x")# 目标函数:最大化总收益
revenue = price_dict
cost = cost_dict
# 地块面积字典(单位:亩)
field_area = area_dict
# 亩产量字典(单位:斤/亩)
yield_per_mu = yield_dict# 目标函数:最大化总收益
model.setObjective(gp.quicksum(revenue[crop] * x[field, crop, season] * yield_per_mu[crop] - cost[crop] * x[field, crop, season] for field in crop_fields for crop in crops for season in seasons), GRB.MAXIMIZE)

以上仅为部分。其中更详细的思路、各题目思路、代码、讲解视频、成品论文及其他相关内容,可以点击下方名片哦:

这篇关于2024高教社杯全国大学生数学建模竞赛C题原创python代码的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1143242

相关文章

Python基于wxPython和FFmpeg开发一个视频标签工具

《Python基于wxPython和FFmpeg开发一个视频标签工具》在当今数字媒体时代,视频内容的管理和标记变得越来越重要,无论是研究人员需要对实验视频进行时间点标记,还是个人用户希望对家庭视频进行... 目录引言1. 应用概述2. 技术栈分析2.1 核心库和模块2.2 wxpython作为GUI选择的优

Spring Boot 3.4.3 基于 Spring WebFlux 实现 SSE 功能(代码示例)

《SpringBoot3.4.3基于SpringWebFlux实现SSE功能(代码示例)》SpringBoot3.4.3结合SpringWebFlux实现SSE功能,为实时数据推送提供... 目录1. SSE 简介1.1 什么是 SSE?1.2 SSE 的优点1.3 适用场景2. Spring WebFlu

java之Objects.nonNull用法代码解读

《java之Objects.nonNull用法代码解读》:本文主要介绍java之Objects.nonNull用法代码,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录Java之Objects.nonwww.chinasem.cnNull用法代码Objects.nonN

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.

Python+PyQt5实现多屏幕协同播放功能

《Python+PyQt5实现多屏幕协同播放功能》在现代会议展示、数字广告、展览展示等场景中,多屏幕协同播放已成为刚需,下面我们就来看看如何利用Python和PyQt5开发一套功能强大的跨屏播控系统吧... 目录一、项目概述:突破传统播放限制二、核心技术解析2.1 多屏管理机制2.2 播放引擎设计2.3 专

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2

Python实现无痛修改第三方库源码的方法详解

《Python实现无痛修改第三方库源码的方法详解》很多时候,我们下载的第三方库是不会有需求不满足的情况,但也有极少的情况,第三方库没有兼顾到需求,本文将介绍几个修改源码的操作,大家可以根据需求进行选择... 目录需求不符合模拟示例 1. 修改源文件2. 继承修改3. 猴子补丁4. 追踪局部变量需求不符合很

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

python+opencv处理颜色之将目标颜色转换实例代码

《python+opencv处理颜色之将目标颜色转换实例代码》OpenCV是一个的跨平台计算机视觉库,可以运行在Linux、Windows和MacOS操作系统上,:本文主要介绍python+ope... 目录下面是代码+ 效果 + 解释转HSV: 关于颜色总是要转HSV的掩膜再标注总结 目标:将红色的部分滤

Python 中的异步与同步深度解析(实践记录)

《Python中的异步与同步深度解析(实践记录)》在Python编程世界里,异步和同步的概念是理解程序执行流程和性能优化的关键,这篇文章将带你深入了解它们的差异,以及阻塞和非阻塞的特性,同时通过实际... 目录python中的异步与同步:深度解析与实践异步与同步的定义异步同步阻塞与非阻塞的概念阻塞非阻塞同步