JAVA并发编程JUC包之CAS原理

2024-09-06 22:04

本文主要是介绍JAVA并发编程JUC包之CAS原理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在JDK 1.5之后,java api中提供了java.util.concurrent包,简称JUC包。这个包定义了很多我们非常熟悉的工具类,比如原子类AtomicXX,线程池executors、信号量semaphore、阻塞队列、同步器等。日常并发编程要用的熟面孔基本都在这里。

       首先,Atomic包,原子操作类,提供了用法简单、性能高效、最重要是线程安全的更新一个变量。支持整型、长整型、布尔、double、数组、以及对象的属性原子修改,支持种类非常丰富。

        之前的文章《JAVA并发编程volatile核心原理》说过,volatile只是解决了多线程的可见性和有序性问题,原子性问题并没有解决。 在这里volatile+Atomic原子类可以完美实现多线程共享变量的安全修改。

1、Atomic原子类并发修改共享变量demo

package lading.java.mutithread;import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.atomic.AtomicInteger;/*** 多线程并发下,使用原子类+volatile进行操作,实现共享变量修改并发安全* 10个线程并发对共享变量count进行求和,每个线程求和100次,最后结果是1000*/
public class Demo005AtomicCount {public static volatile AtomicInteger count = new AtomicInteger(0);public static void main(String[] args) {int threadNum = 10;ExecutorService threadPool = Executors.newFixedThreadPool(threadNum);for (int i = 0; i < threadNum; i++) {//10个线程并发对共享变量count进行求和,每个线程求和100次threadPool.submit(() -> {System.out.println(Thread.currentThread().getName() + "开始对count求和100次");for (int j = 0; j < 100; j++) {count.getAndIncrement();}});}threadPool.shutdown();System.out.println("最后count的值:" + count.get());}
}

结果,刚好就是1000.

2、说一下CAS原理

      CAS 英文原名compare AND swap(比较再置换)。在JUC包中,大量应用了CAS的原理实现,比如AQS ,concurrentHashMap都有应用CAS技术。可以说,synchronized、volatile、CAS就是JAVA并发编程里的基石。

       CAS本质是一条CPU指令,fun(address,oldValue,newValue),其中Address就是本次操作要读取旧值以及修改为新值的内存地址,oldValue就是该内存地址之前的旧值,newValue就是本次操心希望写入的新值。

核心原理:判断内存地址address当前的值是否与oldValue相同,如果相同就更新该内存地址的值为newValue。

先看一下源码,这个AtomicInteger +1源码:

public final int getAndAddInt(Object var1, long var2, int var4) {int var5;do {var5 = this.getIntVolatile(var1, var2);} while(!this.compareAndSwapInt(var1, var2, var5, var5 + var4));return var5;}然后compareAndSwapInt的源码如下:
public final native boolean compareAndSwapInt(Object var1, long var2, int var4, int var5);

       这里this.compareAndSwapInt(var1, var2, var5, var5 + var4));可以看到其实是4个变量,实际就是我们常说的三个变量,因为Object var1表示这个对象内存地址,var2只是偏移量。

       这个偏移量有什么用呢?继续看unsafe c++的源码,发现,其实和我们之前讲的JVM内存模型是一样的,一个对象有自己的地址,对象在内存中会占据一段内存区域,这一片区域会有对象的各种信息,比如锁状态,对象头信息,最重要的是还有我们这个对象的值。那如何找到这个值的内存地址呢?

      这时候就是需要这个long var2 偏移量。通过这个var2才可以读到当前变量的旧值old。然后拿这个old和预期的oldValue去比对,相等了就把newValue更新到值的内存地址。

3、CAS有什么缺陷吗

        在2的核心原理源码看到,很明显,如果发现从内存地址里值不是预期的oldValue,那就陷入了死循环。CAS就是一个while循环判断内存地址值是否等于预期值,不等于就继续循环。

3.1 CAS一直不成功,就会导致CPU自旋时间过长,CPU开销过大。

3.2 A->B->A问题,俗称ABA问题。

        举个例子,有个变量name="A",有个线程想把name从A修改为C。但是很不幸在次过程中被别的线程修改为B后,又再修改为A,它才能执行。再具体一点就是:有个人存款有100块,想去取出来,但是取款机显示余额是0,无法取现;过了一会,发现余额是100,这才能取现。这个诡异的过程就是ABA的问题,CAS对变量预期旧值的循环变化是无感的。

4、如何解决CAS的ABA问题

我们先看一下ABA的demo。

package lading.java.mutithread;import java.util.concurrent.atomic.AtomicInteger;/*** CAS ABA问题复现* count 原值100*/
public class Demo006CasBug {public static volatile AtomicInteger count = new AtomicInteger(100);public static void main(String[] args) throws InterruptedException {//线程1先修改为200,然后马上修改为100Thread thread1 = new Thread(() -> {count.compareAndSet(100, 200);count.compareAndSet(200, 100);System.out.println(Thread.currentThread().getName() + "完成对count的从100修改为200,然后再修改为100");});Thread thread2 = new Thread(() -> {count.compareAndSet(100, 300);System.out.println(Thread.currentThread().getName() + "对count的从100修改为" + count.get());});thread1.start();thread2.start();thread1.join();thread2.join();}
}

结果是线程1无感的修改为300,实际上期间线程0已经修改了2次。

JDK提供了AtomicStampedReference来解决。解决demo:

package lading.java.mutithread;
import java.util.concurrent.atomic.AtomicStampedReference;/*** 解决CAS ABA问题* 用AtomicStampedReference,给原子类增加一个时间戳6666,这样每次修改需要增加判断预期的时间戳* 类似数据库mysql更新一个记录,update set col1='' where col2=oldVal and timestamp=oldVal* 在cas基础上增加一个数据时间戳,确保数据未更新修改过。*/
public class Demo007CasBugFix {public static AtomicStampedReference<Integer> count = new AtomicStampedReference<>(100, 6666);public static void main(String[] args) throws InterruptedException {//线程1先修改为200,然后马上修改为100Thread thread1 = new Thread(() -> {System.out.println(Thread.currentThread().getName() + "第一次修改前时间戳版本号:" + count.getStamp());count.compareAndSet(100, 200, count.getStamp(), count.getStamp() + 1);System.out.println(Thread.currentThread().getName() + "第二次修改前时间戳版本号:" + count.getStamp());count.compareAndSet(200, 100, count.getStamp(), count.getStamp() + 1);System.out.println(Thread.currentThread().getName() + "完成对count的从100修改为200,然后再修改为100");});Thread thread2 = new Thread(() -> {try {Thread.sleep(5);} catch (InterruptedException e) {throw new RuntimeException(e);}System.out.println(Thread.currentThread().getName() + "第三次修改前时间戳版本号:" + count.getStamp());boolean isSuccess = count.compareAndSet(100, 300, count.getStamp(), count.getStamp() + 1);if (isSuccess) {System.out.println(Thread.currentThread().getName() + "修改成功,对count的从100修改为300");} else {System.out.println(Thread.currentThread().getName() + "修改失败,count值为:" + count.getReference());}});thread1.start();thread2.start();}
}

结果,因为时间戳已经被修改了,线程1就没法修改cout,避免了ABA问题:

这篇关于JAVA并发编程JUC包之CAS原理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1143236

相关文章

Spring事务传播机制最佳实践

《Spring事务传播机制最佳实践》Spring的事务传播机制为我们提供了优雅的解决方案,本文将带您深入理解这一机制,掌握不同场景下的最佳实践,感兴趣的朋友一起看看吧... 目录1. 什么是事务传播行为2. Spring支持的七种事务传播行为2.1 REQUIRED(默认)2.2 SUPPORTS2

怎样通过分析GC日志来定位Java进程的内存问题

《怎样通过分析GC日志来定位Java进程的内存问题》:本文主要介绍怎样通过分析GC日志来定位Java进程的内存问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、GC 日志基础配置1. 启用详细 GC 日志2. 不同收集器的日志格式二、关键指标与分析维度1.

Java进程异常故障定位及排查过程

《Java进程异常故障定位及排查过程》:本文主要介绍Java进程异常故障定位及排查过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、故障发现与初步判断1. 监控系统告警2. 日志初步分析二、核心排查工具与步骤1. 进程状态检查2. CPU 飙升问题3. 内存

java中新生代和老生代的关系说明

《java中新生代和老生代的关系说明》:本文主要介绍java中新生代和老生代的关系说明,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、内存区域划分新生代老年代二、对象生命周期与晋升流程三、新生代与老年代的协作机制1. 跨代引用处理2. 动态年龄判定3. 空间分

Java设计模式---迭代器模式(Iterator)解读

《Java设计模式---迭代器模式(Iterator)解读》:本文主要介绍Java设计模式---迭代器模式(Iterator),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,... 目录1、迭代器(Iterator)1.1、结构1.2、常用方法1.3、本质1、解耦集合与遍历逻辑2、统一

Java内存分配与JVM参数详解(推荐)

《Java内存分配与JVM参数详解(推荐)》本文详解JVM内存结构与参数调整,涵盖堆分代、元空间、GC选择及优化策略,帮助开发者提升性能、避免内存泄漏,本文给大家介绍Java内存分配与JVM参数详解,... 目录引言JVM内存结构JVM参数概述堆内存分配年轻代与老年代调整堆内存大小调整年轻代与老年代比例元空

深度解析Java DTO(最新推荐)

《深度解析JavaDTO(最新推荐)》DTO(DataTransferObject)是一种用于在不同层(如Controller层、Service层)之间传输数据的对象设计模式,其核心目的是封装数据,... 目录一、什么是DTO?DTO的核心特点:二、为什么需要DTO?(对比Entity)三、实际应用场景解析

Java 线程安全与 volatile与单例模式问题及解决方案

《Java线程安全与volatile与单例模式问题及解决方案》文章主要讲解线程安全问题的五个成因(调度随机、变量修改、非原子操作、内存可见性、指令重排序)及解决方案,强调使用volatile关键字... 目录什么是线程安全线程安全问题的产生与解决方案线程的调度是随机的多个线程对同一个变量进行修改线程的修改操

从原理到实战深入理解Java 断言assert

《从原理到实战深入理解Java断言assert》本文深入解析Java断言机制,涵盖语法、工作原理、启用方式及与异常的区别,推荐用于开发阶段的条件检查与状态验证,并强调生产环境应使用参数验证工具类替代... 目录深入理解 Java 断言(assert):从原理到实战引言:为什么需要断言?一、断言基础1.1 语

深度解析Java项目中包和包之间的联系

《深度解析Java项目中包和包之间的联系》文章浏览阅读850次,点赞13次,收藏8次。本文详细介绍了Java分层架构中的几个关键包:DTO、Controller、Service和Mapper。_jav... 目录前言一、各大包1.DTO1.1、DTO的核心用途1.2. DTO与实体类(Entity)的区别1