Kafka KSQL实战

2024-09-06 20:48
文章标签 实战 kafka ksql

本文主要是介绍Kafka KSQL实战,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

点击上方蓝色字体,选择“设为星标

回复”资源“获取更多资源

大数据技术与架构

点击右侧关注,大数据开发领域最强公众号!

暴走大数据

点击右侧关注,暴走大数据!

背景

Kafka早期作为一个日志消息系统,很受运维欢迎的,配合ELK玩起来很happy,在kafka慢慢的转向流式平台的过程中,开发也慢慢介入了,一些业务系统也开始和kafka对接起来了,也还是很受大家欢迎的,由于业务需要,一部分小白也就免不了接触kafka了,这些小白总是会安奈不住好奇心,要精确的查看kafka中的某一条数据,作为服务提供方,我也很方啊,该怎么怼?业务方不敢得罪啊,只能写consumer去消费,然后人肉查询。

需求

有什么方法能直接查询kafka中已有的数据呢?那时候presto就映入眼帘了,初步探索后发现presto确实强大,和我们在用的impala有的一拼,支持的数据源也更多,什么redis、mongo、kafka都可以用sql来查询,真是救星啊,这样那群小白就可以直接使用presto来查询里面的数据了。不过presto在不开发插件的情况下,对kafka的数据有格式要求,支持json、avro。但是我只是想用sql查询kafka,而presto功能过于强大,必然整个框架就显得比较厚重了,功能多嘛。有什么轻量级的工具呢?

介绍

某一天,kafka的亲儿子KSQL就诞生了,KSQL是一个用于Apache kafka的流式SQL引擎,KSQL降低了进入流处理的门槛,提供了一个简单的、完全交互式的SQL接口,用于处理Kafka的数据,可以让我们在流数据上持续执行 SQL 查询,KSQL支持广泛的强大的流处理操作,包括聚合、连接、窗口、会话等等。

KSQL在内部使用Kafka的Streams API,并且它们共享与Kafka流处理相同的核心抽象,KSQL有两个核心抽象,它们对应于到Kafka Streams中的两个核心抽象,让你可以处理kafka的topic数据。关于这两个核心抽象下章节解读。

架构

部署架构

由一个KSQL服务器进程执行查询。一组KSQL进程可以作为集群运行。可以通过启动更多的KSQL实例来动态添加更多的处理能力。这些KSQL实例是容错的,如果一个实例失败了,其他的就会接管它的工作。查询是使用交互式的KSQL命令行客户端启动的,该客户端通过REST API向集群发送命令。命令行允许检查可用的stream和table,发出新的查询,检查状态并终止正在运行的查询。KSQL内部是使用Kafka的stream API构建的,它继承了它的弹性可伸缩性、先进的状态管理和容错功能,并支持Kafka最近引入的一次性处理语义。KSQL服务器将此嵌入到一个分布式SQL引擎中(包括一些用于查询性能的自动字节代码生成)和一个用于查询和控制的REST API。

处理架构

抽象概念

KSQL简化了流应用程序,它集成了stream和table的概念,允许使用表示现在发生的事件的stream来连接表示当前状态的table。Apache Kafka中的一个topic可以表示为KSQL中的STREAM或TABLE,具体取决于topic处理的预期语义。下面看看两个核心的解读。

stream:流是无限制的结构化数据序列,stream中的fact是不可变的,这意味着可以将新fact插入到stream中,但是现有fact永远不会被更新或删除。stream可以从Kafka topic创建,或者从现有的stream和table中派生。

table:一个table是一个stream或另一个table的视图,它代表了一个不断变化的fact的集合,它相当于传统的数据库表,但通过流化等流语义来丰富。表中的事实是可变的,这意味着可以将新的事实插入到表中,现有的事实可以被更新或删除。可以从Kafka主题中创建表,也可以从现有的流和表中派生表。

部署

ksql支持kafka0.11之后的版本,在confluent的V3和V4版本中默认并没有加入ksql server程序,当然V3和V4是支持ksql的,在V5版本中已经默认加入ksql了,为了方便演示,我们使用confluent kafka V5版本演示,zk和kafka也是单实例启动。

下载

wget https://packages.confluent.io/archive/5.0/confluent-oss-5.0.0-2.11.tar.gz
tar zxvf confluent-oss-5.0.0-2.11.tar.gz -C /opt/programs/confluent_5.0.0

启动zk

cd /opt/programs/confluent_5.0.0
bin/zookeeper-server-start -daemon etc/kafka/zookeeper.properties

启动kafka

cd /opt/programs/confluent_5.0.0
bin/kafka-server-start -daemon etc/kafka/server.properties

创建topic和data

confluent自带了一个ksql-datagen工具,可以创建和产生相关的topic和数据,ksql-datagen可以指定的参数如下:

[bootstrap-server=<kafka bootstrap server(s)> (defaults to localhost:9092)]
[quickstart=<quickstart preset> (case-insensitive; one of 'orders', 'users', or 'pageviews')]
schema=<avro schema file>
[schemaRegistryUrl=<url for Confluent Schema Registry> (defaults to http://localhost:8081)]
format=<message format> (case-insensitive; one of 'avro', 'json', or 'delimited')
topic=<kafka topic name>
key=<name of key column>
[iterations=<number of rows> (defaults to 1,000,000)]
[maxInterval=<Max time in ms between rows> (defaults to 500)]
[propertiesFile=<file specifying Kafka client properties>]

创建pageviews,数据格式为delimited

cd /opt/programs/confluent_5.0.0/bin
./ksql-datagen quickstart=pageviews format=delimited topic=pageviews maxInterval=500

ps:以上命令会源源不断在stdin上输出数据,就是工具自己产生的数据,如下样例

8001 --> ([ 1539063767860 | 'User_6' | 'Page_77' ]) ts:1539063767860
8011 --> ([ 1539063767981 | 'User_9' | 'Page_75' ]) ts:1539063767981
8021 --> ([ 1539063768086 | 'User_5' | 'Page_16' ]) ts:1539063768086

不过使用consumer消费出来的数据是如下样式

1539066430530,User_5,Page_29
1539066430915,User_6,Page_74
1539066431192,User_4,Page_28
1539066431621,User_6,Page_38
1539066431772,User_7,Page_29
1539066432122,User_8,Page_34

创建users,数据格式为json

cd /opt/programs/confluent_5.0.0/bin
./ksql-datagen quickstart=users format=json topic=users maxInterval=100

ps:以上命令会源源不断在stdin上输出数据,就是工具自己产生的数据,如下样例

User_5 --> ([ 1517896551436 | 'User_5' | 'Region_5' | 'MALE' ]) ts:1539063787413
User_7 --> ([ 1513998830510 | 'User_7' | 'Region_4' | 'MALE' ]) ts:1539063787430
User_6 --> ([ 1514865642822 | 'User_6' | 'Region_2' | 'MALE' ]) ts:1539063787481

不过使用consumer消费出来的数据是如下样式

{"registertime":1507118206666,"userid":"User_6","regionid":"Region_7","gender":"OTHER"}
{"registertime":1506192314325,"userid":"User_1","regionid":"Region_1","gender":"MALE"}
{"registertime":1489277749526,"userid":"User_6","regionid":"Region_4","gender":"FEMALE"}
{"registertime":1497188917765,"userid":"User_9","regionid":"Region_3","gender":"OTHER"}
{"registertime":1493121964253,"userid":"User_4","regionid":"Region_3","gender":"MALE"}
{"registertime":1515609444511,"userid":"User_5","regionid":"Region_9","gender":"FEMALE"}

启动ksql

cd /opt/programs/confluent_5.0.0
bin/ksql-server-start -daemon etc/ksql/ksql-server.properties

连接ksql

cd /opt/programs/confluent_5.0.0
bin/ksql http://10.205.151.145:8088

    

创建stream和table

stream

根据topic pageviews创建一个stream pageviews_original,value_format为DELIMITED

ksql>CREATE STREAM pageviews_original (viewtime bigint, userid varchar, pageid varchar) WITH \
(kafka_topic='pageviews', value_format='DELIMITED');

table

根据topic users创建一个table users_original,value_format为json

ksql>CREATE TABLE users_original (registertime BIGINT, gender VARCHAR, regionid VARCHAR, userid VARCHAR) WITH \
(kafka_topic='users', value_format='JSON', key = 'userid');

查询数据

ksql> SELECT * FROM USERS_ORIGINAL LIMIT 3;
ksql> SELECT * FROM pageviews_original LIMIT 3;

ps:ksql默认是从kafka最新的数据查询消费的,如果你想从开头查询,则需要在会话上进行设置:SET 'auto.offset.reset' = 'earliest';

持久化查询

持久化查询可以源源不断的把查询出的数据发送到你指定的topic中去,查询的时候在select前面添加create stream关键字即可创建持久化查询。

创建查询

ksql> CREATE STREAM pageviews2 AS SELECT userid FROM pageviews_original;

查询新stream

ksql> SHOW STREAMS;

ps:可以看到新创建了stream PAGEVIEWS2,并且创建了topic PAGEVIEWS2

查询执行任务

ksql> SHOW QUERIES;

ps:可以看到ID为CSAS_PAGEVIEWS2_0的任务在执行,并且有显示执行的语句

消费新数据

cd /opt/programs/confluent_5.0.0/bin
./kafka-console-consumer --bootstrap-server 10.205.151.145:9092 --from-beginning --topic
PAGEVIEWS2

ps:可以看到PAGEVIEWS2 topic里面正是我们通过select筛选出来的数据

终止查询任务

ksql> TERMINATE CSAS_PAGEVIEWS2_0;

欢迎点赞+收藏+转发朋友圈素质三连

文章不错?点个【在看】吧! ????

这篇关于Kafka KSQL实战的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1143079

相关文章

从原理到实战深入理解Java 断言assert

《从原理到实战深入理解Java断言assert》本文深入解析Java断言机制,涵盖语法、工作原理、启用方式及与异常的区别,推荐用于开发阶段的条件检查与状态验证,并强调生产环境应使用参数验证工具类替代... 目录深入理解 Java 断言(assert):从原理到实战引言:为什么需要断言?一、断言基础1.1 语

Java MQTT实战应用

《JavaMQTT实战应用》本文详解MQTT协议,涵盖其发布/订阅机制、低功耗高效特性、三种服务质量等级(QoS0/1/2),以及客户端、代理、主题的核心概念,最后提供Linux部署教程、Sprin... 目录一、MQTT协议二、MQTT优点三、三种服务质量等级四、客户端、代理、主题1. 客户端(Clien

在Spring Boot中集成RabbitMQ的实战记录

《在SpringBoot中集成RabbitMQ的实战记录》本文介绍SpringBoot集成RabbitMQ的步骤,涵盖配置连接、消息发送与接收,并对比两种定义Exchange与队列的方式:手动声明(... 目录前言准备工作1. 安装 RabbitMQ2. 消息发送者(Producer)配置1. 创建 Spr

深度解析Spring Boot拦截器Interceptor与过滤器Filter的区别与实战指南

《深度解析SpringBoot拦截器Interceptor与过滤器Filter的区别与实战指南》本文深度解析SpringBoot中拦截器与过滤器的区别,涵盖执行顺序、依赖关系、异常处理等核心差异,并... 目录Spring Boot拦截器(Interceptor)与过滤器(Filter)深度解析:区别、实现

深度解析Spring AOP @Aspect 原理、实战与最佳实践教程

《深度解析SpringAOP@Aspect原理、实战与最佳实践教程》文章系统讲解了SpringAOP核心概念、实现方式及原理,涵盖横切关注点分离、代理机制(JDK/CGLIB)、切入点类型、性能... 目录1. @ASPect 核心概念1.1 AOP 编程范式1.2 @Aspect 关键特性2. 完整代码实

MySQL中的索引结构和分类实战案例详解

《MySQL中的索引结构和分类实战案例详解》本文详解MySQL索引结构与分类,涵盖B树、B+树、哈希及全文索引,分析其原理与优劣势,并结合实战案例探讨创建、管理及优化技巧,助力提升查询性能,感兴趣的朋... 目录一、索引概述1.1 索引的定义与作用1.2 索引的基本原理二、索引结构详解2.1 B树索引2.2

从入门到精通MySQL 数据库索引(实战案例)

《从入门到精通MySQL数据库索引(实战案例)》索引是数据库的目录,提升查询速度,主要类型包括BTree、Hash、全文、空间索引,需根据场景选择,建议用于高频查询、关联字段、排序等,避免重复率高或... 目录一、索引是什么?能干嘛?核心作用:二、索引的 4 种主要类型(附通俗例子)1. BTree 索引(

Java Web实现类似Excel表格锁定功能实战教程

《JavaWeb实现类似Excel表格锁定功能实战教程》本文将详细介绍通过创建特定div元素并利用CSS布局和JavaScript事件监听来实现类似Excel的锁定行和列效果的方法,感兴趣的朋友跟随... 目录1. 模拟Excel表格锁定功能2. 创建3个div元素实现表格锁定2.1 div元素布局设计2.

Redis 配置文件使用建议redis.conf 从入门到实战

《Redis配置文件使用建议redis.conf从入门到实战》Redis配置方式包括配置文件、命令行参数、运行时CONFIG命令,支持动态修改参数及持久化,常用项涉及端口、绑定、内存策略等,版本8... 目录一、Redis.conf 是什么?二、命令行方式传参(适用于测试)三、运行时动态修改配置(不重启服务

Python并行处理实战之如何使用ProcessPoolExecutor加速计算

《Python并行处理实战之如何使用ProcessPoolExecutor加速计算》Python提供了多种并行处理的方式,其中concurrent.futures模块的ProcessPoolExecu... 目录简介完整代码示例代码解释1. 导入必要的模块2. 定义处理函数3. 主函数4. 生成数字列表5.