Verilog和Matlab实现RGB888互转YUV444

2024-09-06 19:20

本文主要是介绍Verilog和Matlab实现RGB888互转YUV444,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 一、色彩空间
    • 1.1 RGB色彩空间
    • 1.2 CMYK色彩空间
    • 1.3 YUV色彩空间
  • 二、色彩空间转换公式
    • 2.1 RGB转CMYK
    • 2.2 CMYK转RGB
    • 2.3 RGB888转YUV444
    • 2.4 YUV444转RGB888
  • 三、MATLAB实现RGB888转YUV444
    • 3.1 matlab代码
    • 3.2 matlab结果
  • 四、Verilog实现RGB888转YUV444


一、色彩空间

  色彩空间就是显示一幅图像所使用的特定颜色组合,不同的应用场景会使用不同的色彩空间。常见的色彩空间有RGB、CMYK、HSV、LAB以及YUV等等。

1.1 RGB色彩空间

  RGB色彩空间最常用的用途就是显示器领域,利用物理中光的三原色可以叠加成不同颜色的原理;因此一个像素由R、G、B三种颜色分量组成,在RGB色彩空间中,R、G、B三个分量的属性是独立的,每个分量数字越大,对应的颜色占比就越大。常见的RGB格式有RGB888、RGB565、RGB555等等,其中RGB888表示每种颜色分量都有256级,所以RGB888能表示256 * 256 * 256=1677w种颜色。RGB色彩空间应用十分广泛,但不适合做图像处理,因为人眼视网膜上存在两种视敏细胞:锥状细胞和杆状细胞这两种细胞对颜色和亮度的感知程度不一样(具体可以去了解以下人眼系统构成),总之就是人眼对亮度的感知大于对颜色的感知。而RGB三种分量都与亮度有关系,因此做图像处理时,改变任意分量对亮度都会产生影响,因此RGB色彩空间通常只是用来显示。

在这里插入图片描述

1.2 CMYK色彩空间

  CMYK色彩空间的使用场景是印刷、打印等领域,当光线照射到一个物体上时,物体将吸收一部分光,并将剩下的光进行反射,反射的光线就是我们所看见的物体颜色,这也是与RGB色彩空间的根本不同之处。CMYK颜色模型使用青、品红、黄、黑四个通道来表示颜色,青、品红、黄三个通道分别对应RGB的补色,K通道表示黑色墨水的量

在这里插入图片描述
  因此RGB色域更广,CMYK相较于RGB色域有限,所以存在一些RGB里的颜色在印刷时无法显示的情况,这些CMYK色域不包含的颜色在印刷时会丢失。

1.3 YUV色彩空间

  YUV是指亮度分量和色度分量都分开表示的像素格式,其中Y表示明亮度(Luminance或Luma),也就是灰度值;而U和V表示的则是色度(Chrominance或Chroma),作用是描述影像色彩及饱和度,用于指定像素的颜色。

  YCbCr其中Y是指亮度分量,Cb指蓝色色度分量,而Cr指红色色度分量。YCbCr 则是在世界数字组织视频标准研制过程中作为ITU - R BT.601 建议的一部分,其实是YUV经过缩放和偏移的翻版。其中Y与YUV 中的Y含义一致,Cb,Cr 同样都指色彩,只是在表示方法上不同而已。在YUV 家族中,YCbCr 是在计算机系统中应用最多的成员,其应用领域很广泛,JPEG、MPEG均采用此格式。

  1. YUV是一种模拟信号,其色彩模型源于RGB,常用于模拟广播电视中
  2. YCbCr是一种数字信号,是YUV压缩和偏移的结果,在数字视频中广泛使用。

  一般人们所讲的YUV大多是指YCbCr。YCbCr 有许多采样格式,是在获取原始图像数据时采用的策略。如YUV444,YUV422,YUV420 。

  • YUV 4:4:4表示每一个 Y 分量对应一对 UV 分量,每像素占用 (Y + U + V = 8 + 8 + 8 = 24bits)

在这里插入图片描述

  • YUV 4:2:2表示每两个 Y 分量对应一对 UV 分量,每像素占用 (Y + 0.5U + 0.5V = 8 + 4 + 4 = 16bits)

在这里插入图片描述

  • YUV 4:2:0表示每四个 Y 分量对应一对 UV 分量,每像素占用 (Y + 0.25U + 0.25V = 8 + 2 + 2 = 12bits)

在这里插入图片描述

二、色彩空间转换公式

2.1 RGB转CMYK

  第一步:将RGB色彩空间中的颜色映射到CMY色彩空间中R,G,B值除以255,将范围从0…255更改为0~1

R ′ = R / 255 R^{'}=R/255 R=R/255
G ′ = G / 255 G^{'}=G/255 G=G/255
B ′ = B / 255 B^{'}=B/255 B=B/255
  第二步:计算出黑色K的量值:
K = 1 − m a x ( R ′ , G ′ , B ′ ) K=1 - max(R^{'},G^{'},B^{'}) K=1max(R,G,B)
  第三步:计算出C(青色),M(品红),Y(红色)的值:
C = ( 1 − R ′ − K ) / ( 1 − K ) C =(1 - R^{'} - K)/ (1 - K) C=1RK/(1K)
M = ( 1 − G ′ − K ) / ( 1 − K ) M =(1 - G^{'} - K)/ (1 - K) M=1GK/(1K)
Y = ( 1 − B ′ − K ) / ( 1 − K ) Y =(1 - B^{'} - K)/ (1 - K) Y=1BK/(1K)

  例如R、G、 B = 88、137、142转换成CMYK就等于C、M、Y、K=38、4、0、44(单位%)

在这里插入图片描述

2.2 CMYK转RGB

R = 255 ∗ ( 1 − C ) ∗ ( 1 − K ) R=255 * (1-C)*(1-K) R=2551C1K
G = 255 ∗ ( 1 − M ) ∗ ( 1 − K ) G=255 * (1-M)*(1-K) G=2551M1K
B = 255 ∗ ( 1 − Y ) ∗ ( 1 − K ) B=255 * (1-Y)*(1-K) B=2551Y1K

  例如C、M、Y、K=38、4、0、44(单位%)等于R、G、 B = 89、137、143

在这里插入图片描述

2.3 RGB888转YUV444

Y = 0.299 ∗ R + 0.587 ∗ G + 0.114 ∗ B Y=0.299 *R + 0.587*G + 0.114 * B Y=0.299R+0.587G+0.114B
U = − 0.169 ∗ R − 0.331 ∗ G + 0.5 ∗ B + 128 U=-0.169 *R -0.331*G + 0.5 * B + 128 U=0.169R0.331G+0.5B+128
V = 0.5 ∗ R − 0.419 ∗ G − 0.081 ∗ B + 128 V=0.5 *R - 0.419*G -0.081 * B + 128 V=0.5R0.419G0.081B+128

2.4 YUV444转RGB888

R = Y + 1.402 ∗ V − 1.402 ∗ 128 R=Y + 1.402*V - 1.402 * 128 R=Y+1.402V1.402128
G = Y − 0.344 ∗ U − 0.714 ∗ V + 1.058 ∗ 128 G=Y -0.344*U - 0.714 * V + 1.058*128 G=Y0.344U0.714V+1.058128
B = Y + 1.772 ∗ U − 1.772 ∗ 128 B=Y + 1.772*U -1.772*128 B=Y+1.772U1.772128

三、MATLAB实现RGB888转YUV444

3.1 matlab代码

clear all; close all; clc;% -------------------------------------------------------------------------
% 读图像到matlab
IMG1 = imread('..................../.jpg');    % 读取jpg图像
h = size(IMG1,1);         % 读取图像高度
w = size(IMG1,2);         % 读取图像宽度
subplot(221);imshow(IMG1);title('RGB图像');% -------------------------------------------------------------------------
% 计算YUV
% Y=0.299  *R  + 0.587*G + 0.114 * B
% U=-0.169 *R  - 0.331*G + 0.5   * B + 128
% V=0.5    *R  - 0.419*G - 0.081 * B + 128
IMG1 = double(IMG1);    %转为双精度浮点数   
IMG_YUV = zeros(h,w,3); %先将变量清零 
for i = 1 : hfor j = 1 : wIMG_YUV(i,j, 1) = ( IMG1(i,j,1)*0.299 + IMG1(i,j,2)*0.587 + IMG1(i,j,3)*0.114);IMG_YUV(i,j,2)  = (-IMG1(i,j,1)*0.169 - IMG1(i,j,2)*0.331 + IMG1(i,j,3)*0.5 + 128);IMG_YUV(i,j,3)  = ( IMG1(i,j,1)*0.5   - IMG1(i,j,2)*0.419 - IMG1(i,j,3)*0.081 + 128);end
end% -------------------------------------------------------------------------
% Display Y Cb Cr Channel
IMG_YUV = uint8(IMG_YUV); 
subplot(222); imshow(IMG_YUV(:,:,1));  title('Y  通道');
subplot(223); imshow(IMG_YUV(:,:,2));  title('Cb 通道');
subplot(224); imshow(IMG_YUV(:,:,3));  title('Cr 通道');

3.2 matlab结果

在这里插入图片描述

四、Verilog实现RGB888转YUV444

这篇关于Verilog和Matlab实现RGB888互转YUV444的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1142897

相关文章

使用Sentinel自定义返回和实现区分来源方式

《使用Sentinel自定义返回和实现区分来源方式》:本文主要介绍使用Sentinel自定义返回和实现区分来源方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Sentinel自定义返回和实现区分来源1. 自定义错误返回2. 实现区分来源总结Sentinel自定

Java实现时间与字符串互相转换详解

《Java实现时间与字符串互相转换详解》这篇文章主要为大家详细介绍了Java中实现时间与字符串互相转换的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、日期格式化为字符串(一)使用预定义格式(二)自定义格式二、字符串解析为日期(一)解析ISO格式字符串(二)解析自定义

opencv图像处理之指纹验证的实现

《opencv图像处理之指纹验证的实现》本文主要介绍了opencv图像处理之指纹验证的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录一、简介二、具体案例实现1. 图像显示函数2. 指纹验证函数3. 主函数4、运行结果三、总结一、

Springboot处理跨域的实现方式(附Demo)

《Springboot处理跨域的实现方式(附Demo)》:本文主要介绍Springboot处理跨域的实现方式(附Demo),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不... 目录Springboot处理跨域的方式1. 基本知识2. @CrossOrigin3. 全局跨域设置4.

Spring Boot 3.4.3 基于 Spring WebFlux 实现 SSE 功能(代码示例)

《SpringBoot3.4.3基于SpringWebFlux实现SSE功能(代码示例)》SpringBoot3.4.3结合SpringWebFlux实现SSE功能,为实时数据推送提供... 目录1. SSE 简介1.1 什么是 SSE?1.2 SSE 的优点1.3 适用场景2. Spring WebFlu

基于SpringBoot实现文件秒传功能

《基于SpringBoot实现文件秒传功能》在开发Web应用时,文件上传是一个常见需求,然而,当用户需要上传大文件或相同文件多次时,会造成带宽浪费和服务器存储冗余,此时可以使用文件秒传技术通过识别重复... 目录前言文件秒传原理代码实现1. 创建项目基础结构2. 创建上传存储代码3. 创建Result类4.

SpringBoot日志配置SLF4J和Logback的方法实现

《SpringBoot日志配置SLF4J和Logback的方法实现》日志记录是不可或缺的一部分,本文主要介绍了SpringBoot日志配置SLF4J和Logback的方法实现,文中通过示例代码介绍的非... 目录一、前言二、案例一:初识日志三、案例二:使用Lombok输出日志四、案例三:配置Logback一

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.

Python+PyQt5实现多屏幕协同播放功能

《Python+PyQt5实现多屏幕协同播放功能》在现代会议展示、数字广告、展览展示等场景中,多屏幕协同播放已成为刚需,下面我们就来看看如何利用Python和PyQt5开发一套功能强大的跨屏播控系统吧... 目录一、项目概述:突破传统播放限制二、核心技术解析2.1 多屏管理机制2.2 播放引擎设计2.3 专

Python实现无痛修改第三方库源码的方法详解

《Python实现无痛修改第三方库源码的方法详解》很多时候,我们下载的第三方库是不会有需求不满足的情况,但也有极少的情况,第三方库没有兼顾到需求,本文将介绍几个修改源码的操作,大家可以根据需求进行选择... 目录需求不符合模拟示例 1. 修改源文件2. 继承修改3. 猴子补丁4. 追踪局部变量需求不符合很