力扣416-分割等和子集(Java详细题解)

2024-09-06 15:04

本文主要是介绍力扣416-分割等和子集(Java详细题解),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

题目链接:416. 分割等和子集 - 力扣(LeetCode)

前情提要:

因为本人最近都来刷dp类的题目所以该题就默认用dp方法来做。

最近刚学完01背包,所以现在的题解都是以01背包问题为基础再来写的。

如果大家不懂01背包的话,建议可以去学一学,01背包问题可以说是背包问题的基础。

如果大家感兴趣,我后期可以出一篇专门讲解01背包问题。

dp五部曲。

1.确定dp数组和i下标的含义。

2.确定递推公式。

3.dp初始化。

4.确定dp的遍历顺序。

5.如果没有ac打印dp数组 利于debug。

每一个dp题目如果都用这五步分析清楚,那么这道题就能解出来了。

这里下文统一使用一维dp数组。

题目思路:

题目还是比较好入手,判断数组是否可以分为俩个自己,并使俩个子集的元素和相等。

由此可见,如果一个数组他的元素和为偶数的话,就可以使俩个子集的元素和相等。

如果为奇数,就不可能使俩个子集元素和相等,直接return false。

这只是一个小的优化。我们来看看核心思路。

分成俩个子集后,如果我们确定了一个子集的元素和为整个数组和的一半,另一半的就可以确定下来了。

所以我们分析其中的一个子集就可以。

如果一个子集的元素和等于整个数组的元素和的一半,那么这个子集就可以确定下来,整个数组就可以分为俩个子集。

怎么确定个子集的元素和等于整个数组的元素和的一半呢?

这里就要用到01背包的应用了。

01背包是有n个物品,每个物品有其对应的价值和重量,给你一个容量为m的背包,让你求该背包所能放下物品的最大价值。

那么这道题的子集怎么跟01背包关联呢?

其实这个子集的元素和就可以当做01背包的背包容量,元素本身可以当做他的价值和重量,即他的价值和重量都一致。

怎么理解呢?

我们要判断一个集合里是否有数能累加起来等于整个数组元素和的一半。

元素和当做背包容量。

元素本身就是物品。

元素的值就是物品的价值,同时也代表它所占的背包容量。

其实01背包我们是要尽可能的将背包装满然后得出他的最大价值。

那这个子集的元素和就是我们尽可能的将背包装满判断他的最大价值等于容量即可。

接着我们用dp五部曲来系统分析。

1.确定dp数组和i下标的含义。

dp[i] 表示i容量的背包所能放下的最大价值。

如果后面有不理解的,多理解一下dp数组的含义。

2.确定递推公式。

我们每个元素只有选和不选俩种状态。

即选择nums[i]这个元素时,对于背包只有选和不选俩个状态。

我们类比一下01背包问题的递推公式dp[j] = Math.max(dp[j],dp[j - weight[i] + value[i]);

没选的状态就是dp[j]。没有选他那他的重量肯定就不变。

选的状态就是dp[j - weigtht[i]] + value[i]。

既然选择要加nums[i],那我们肯定要求出在放入他之前的最大价值再加上他自身的价值就是背包整个的价值。

放入之前的容量就是j - weigth[i]

因为本题是重量与价值一致。

我们尽可能的将背包填满使它的价值等于它背包的容量。如果等于则return true反之return false

所以当背包容量为j时,dp[j] = Math.max(dp[j],dp[j - nums[i]] + nums[i]);

3.dp初始化。

初始化也很重要,当我们的元素和为0时,那我们所占的元素价值为多少?

肯定为0啊,所以dp[0] = 0。

那其他非零元素和我们怎么初始化呢?

其实非零元素和我们可以不管他们,他们都可以根据当前元素选或不选来推出元素和的价值。

4.确定dp的遍历顺序。

背包问题我们的遍历顺序是先遍历物品再遍历背包,同理,元素和也是先遍历物品(元素)再遍历背包(元素和)。

且第一层循环遍历物品是从前往后遍历,而第二层循环是从后往遍历。

从后往前遍历背包容量是确保每个物品只放一次,即不需要前面的状态。

如果从前往后遍历背包容量可能导致一个物品放入多次,他使用了前面的状态。

而本题元素只能使用一次,所以背包容量应该从后往前遍历。

5.如果没有ac打印dp数组 利于debug。

最后dp[i]模拟后情况就是这样,大家可以打印dp数组对着看看哪与你的不符。

在这里插入图片描述

最终代码:

class Solution {public boolean canPartition(int[] nums) {//定义元素和int sum = 0;for(int i = 0;i < nums.length; i++){sum += nums[i];}//判断如果不为偶数 直接返回falseif(sum % 2 != 0)return false;//目标元素和int tagert = sum / 2;//定义dp数组int[] dp = new int [tagert + 1];//初始化dp数组dp[0] = 0;//确定dp数组的遍历顺序for(int i = 0;i < nums.length;i ++){for(int j = tagert;j >= nums[i];j --){dp[j] = Math.max(dp[j],dp[j - nums[i]] + nums[i]);//如果背包价值等于背包容量 直接return trueif(dp[j] == tagert){return true;}}}return false;}
}

背包问题就是这样,思路分析一大堆,实际代码一小堆。

我们多做多理解就好。

这一篇博客就到这了,如果你有什么疑问和想法可以打在评论区,或者私信我。

我很乐意为你解答。那么我们下篇再见!

这篇关于力扣416-分割等和子集(Java详细题解)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1142335

相关文章

Java 正则表达式URL 匹配与源码全解析

《Java正则表达式URL匹配与源码全解析》在Web应用开发中,我们经常需要对URL进行格式验证,今天我们结合Java的Pattern和Matcher类,深入理解正则表达式在实际应用中... 目录1.正则表达式分解:2. 添加域名匹配 (2)3. 添加路径和查询参数匹配 (3) 4. 最终优化版本5.设计思

Java使用ANTLR4对Lua脚本语法校验详解

《Java使用ANTLR4对Lua脚本语法校验详解》ANTLR是一个强大的解析器生成器,用于读取、处理、执行或翻译结构化文本或二进制文件,下面就跟随小编一起看看Java如何使用ANTLR4对Lua脚本... 目录什么是ANTLR?第一个例子ANTLR4 的工作流程Lua脚本语法校验准备一个Lua Gramm

Java字符串操作技巧之语法、示例与应用场景分析

《Java字符串操作技巧之语法、示例与应用场景分析》在Java算法题和日常开发中,字符串处理是必备的核心技能,本文全面梳理Java中字符串的常用操作语法,结合代码示例、应用场景和避坑指南,可快速掌握字... 目录引言1. 基础操作1.1 创建字符串1.2 获取长度1.3 访问字符2. 字符串处理2.1 子字

Java Optional的使用技巧与最佳实践

《JavaOptional的使用技巧与最佳实践》在Java中,Optional是用于优雅处理null的容器类,其核心目标是显式提醒开发者处理空值场景,避免NullPointerExce... 目录一、Optional 的核心用途二、使用技巧与最佳实践三、常见误区与反模式四、替代方案与扩展五、总结在 Java

Linux内核参数配置与验证详细指南

《Linux内核参数配置与验证详细指南》在Linux系统运维和性能优化中,内核参数(sysctl)的配置至关重要,本文主要来聊聊如何配置与验证这些Linux内核参数,希望对大家有一定的帮助... 目录1. 引言2. 内核参数的作用3. 如何设置内核参数3.1 临时设置(重启失效)3.2 永久设置(重启仍生效

基于Java实现回调监听工具类

《基于Java实现回调监听工具类》这篇文章主要为大家详细介绍了如何基于Java实现一个回调监听工具类,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录监听接口类 Listenable实际用法打印结果首先,会用到 函数式接口 Consumer, 通过这个可以解耦回调方法,下面先写一个

使用Java将DOCX文档解析为Markdown文档的代码实现

《使用Java将DOCX文档解析为Markdown文档的代码实现》在现代文档处理中,Markdown(MD)因其简洁的语法和良好的可读性,逐渐成为开发者、技术写作者和内容创作者的首选格式,然而,许多文... 目录引言1. 工具和库介绍2. 安装依赖库3. 使用Apache POI解析DOCX文档4. 将解析

Java字符串处理全解析(String、StringBuilder与StringBuffer)

《Java字符串处理全解析(String、StringBuilder与StringBuffer)》:本文主要介绍Java字符串处理全解析(String、StringBuilder与StringBu... 目录Java字符串处理全解析:String、StringBuilder与StringBuffer一、St

springboot整合阿里云百炼DeepSeek实现sse流式打印的操作方法

《springboot整合阿里云百炼DeepSeek实现sse流式打印的操作方法》:本文主要介绍springboot整合阿里云百炼DeepSeek实现sse流式打印,本文给大家介绍的非常详细,对大... 目录1.开通阿里云百炼,获取到key2.新建SpringBoot项目3.工具类4.启动类5.测试类6.测

Spring Boot循环依赖原理、解决方案与最佳实践(全解析)

《SpringBoot循环依赖原理、解决方案与最佳实践(全解析)》循环依赖指两个或多个Bean相互直接或间接引用,形成闭环依赖关系,:本文主要介绍SpringBoot循环依赖原理、解决方案与最... 目录一、循环依赖的本质与危害1.1 什么是循环依赖?1.2 核心危害二、Spring的三级缓存机制2.1 三