力扣1049-最后一块石头的重量II(Java详细题解)

2024-09-06 13:04

本文主要是介绍力扣1049-最后一块石头的重量II(Java详细题解),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

题目链接:1049. 最后一块石头的重量 II - 力扣(LeetCode)

前情提要:

因为本人最近都来刷dp类的题目所以该题就默认用dp方法来做。

最近刚学完01背包,所以现在的题解都是以01背包问题为基础再来写的。

如果大家不懂01背包的话,建议可以去学一学,01背包问题可以说是背包问题的基础。

如果大家感兴趣,我后期可以出一篇专门讲解01背包问题。

dp五部曲。

1.确定dp数组和i下标的含义。

2.确定递推公式。

3.dp初始化。

4.确定dp的遍历顺序。

5.如果没有ac打印dp数组 利于debug。

每一个dp题目如果都用这五步分析清楚,那么这道题就能解出来了。

这里下文统一使用一维dp数组。

题目思路:

刚看到该题,可能大家都有点懵,那么多石头,我们从中选出俩个石头粉碎,最多剩下一块石头,返回该石头的最小可能重量。

但是我们思考一下,他最后最多剩下一个石头,我们能不能将这一大堆石头,分为俩堆。

然后让这俩堆里的石头任何挑俩个(一堆挑一个)不断的粉碎。

但是我们怎么求出最小的可能重量呢,其实我们就让这俩堆的石头重量和尽可能的相等,最后的俩堆石头的差值就是剩下的最后一块石头了。

那么差值越小最后一块石头的重量就越小,所以我们要求这俩堆石头的重量和尽可能相等。

分析到这,看过我力扣416-分割等和子集那篇题解的会发现,这道题跟那道题很像。

都是分为俩个不同的部分,求某一个部分,另一个部分也就确定下来了。

比如这一堆石头重量为i,另一堆石头不就为sum(重量总和) - i。

其实不仅思路都很像,代码也只是最后处理背包价值的逻辑有些不同。

没看过的也没关系,我会重新再讲一遍。

分成俩个石头堆后,如果我们确定了一个石头堆的重量和,另一半的就可以确定下来了。

所以我们分析其中的一个石头堆就可以。

其实我们就是要让其中的一堆石头重量尽可能的与另一堆相等对吧。

也就是让其中的一堆石头重量尽可能的等于一大堆石头重量的一半。

如何让一堆石头的重量尽可能等于整个石头堆的重量和的一半呢?

这里就要用到01背包的应用了。

01背包是有n个物品,每个物品有其对应的价值和重量,给你一个容量为m的背包,让你求该背包所能放下物品的最大价值。

那么这道题的子集怎么跟01背包关联呢?

其实这一堆石头的重量和就可以当做01背包的背包容量,石头本身可以当做他的价值和重量,即他的价值和重量都一致。

怎么理解呢?

我们要让一个石头堆的重量和尽可能的等于整个石头堆重量的一半。

也就是我们把这整个石头堆重量的一半当作我们的背包容量,然后能装多少是多少,求出最大装的重量(也就是背包的价值)即可。

整个石头堆重量的一半当做背包容量。

石头本身就是物品。

石头的重量就是物品的价值,同时也代表它所占的背包容量。

其实01背包我们是要尽可能的将背包装满然后得出他的最大价值。

这个题求的也是尽可能的让背包(石头堆)装满求出他的最大价值(重量)。

接着我们用dp五部曲来系统分析。

1.确定dp数组和i下标的含义。

dp[i] 表示i容量的背包所能放下的最大价值。

如果后面有不理解的,多理解一下dp数组的含义。

2.确定递推公式。

我们每个元素只有选和不选俩种状态。

即选择stones[i]这个元素时,对于背包只有选和不选俩个状态。

我们类比一下01背包问题的递推公式dp[j] = Math.max(dp[j],dp[j - weight[i] + value[i]);

没选的状态就是dp[j]。没有选他那他的重量肯定就不变。

选的状态就是dp[j - weigtht[i]] + value[i]。

既然选择要加stones[i],那我们肯定要求出在放入他之前的最大价值再加上他自身的价值就是背包整个的价值。

放入之前的容量就是j - weigth[i]

因为本题是重量与价值一致。

我们尽可能的将背包填满使它的价值尽可能的大。

所以当背包容量为j时,dp[j] = Math.max(dp[j],dp[j - nums[i]] + nums[i]);

3.dp初始化。

初始化也很重要,当我们的元素和为0时,那我们所占的元素价值为多少?

肯定为0啊,所以dp[0] = 0。

那其他非零元素和我们怎么初始化呢?

其实非零元素和我们可以不管他们,他们都可以根据当前元素选或不选来推出重量和的价值。

4.确定dp的遍历顺序。

背包问题我们的遍历顺序是先遍历物品再遍历背包,同理,元素和也是先遍历物品(石头)再遍历背包(一大堆石头重量的一半)。

且第一层循环遍历物品是从前往后遍历,而第二层循环是从后往遍历。

从后往前遍历背包容量是确保每个物品只放一次,即不需要前面的状态。

如果从前往后遍历背包容量可能导致一个物品放入多次,他使用了前面的状态。

而本题元素只能使用一次,所以背包容量应该从后往前遍历。

5.如果没有ac打印dp数组 利于debug。

最后dp[i]模拟后情况就是这样,大家可以打印dp数组对着看看哪与你的不符。

在这里插入图片描述

最终代码:

class Solution {public int lastStoneWeightII(int[] stones) {//本题的思路关键就是分成尽可能相等的俩堆,然后让俩堆相撞。剩下的石头就是最小可能重量。//定义整个石头堆的总和int sum = 0;for(int i = 0;i < stones.length;i ++){sum += stones[i];}//求出背包的容量int tagert = sum / 2;//确定dp数组含义int dp[] = new int [tagert + 1];//初始化dp数组dp[0] = 0;//确定dp数组的遍历顺序for(int i = 0;i < stones.length;i ++){for(int j = tagert; j >= stones[i];j --){dp[j] = Math.max(dp[j],dp[j - stones[i]] + stones[i]);}}//dp[tagert] 是这一堆最大能装的重量 另一堆就是 sum - dp[tagert]  //俩堆的石头的差值 就是所剩下的最后一块石头的重量 sum - dp[tagert] - dp[tagert] return sum - (2 * dp[tagert]);}
}

这一篇博客就到这了,如果你有什么疑问和想法可以打在评论区,或者私信我。

我很乐意为你解答。那么我们下篇再见!

这篇关于力扣1049-最后一块石头的重量II(Java详细题解)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1142079

相关文章

SpringBoot使用Apache Tika检测敏感信息

《SpringBoot使用ApacheTika检测敏感信息》ApacheTika是一个功能强大的内容分析工具,它能够从多种文件格式中提取文本、元数据以及其他结构化信息,下面我们来看看如何使用Ap... 目录Tika 主要特性1. 多格式支持2. 自动文件类型检测3. 文本和元数据提取4. 支持 OCR(光学

Java内存泄漏问题的排查、优化与最佳实践

《Java内存泄漏问题的排查、优化与最佳实践》在Java开发中,内存泄漏是一个常见且令人头疼的问题,内存泄漏指的是程序在运行过程中,已经不再使用的对象没有被及时释放,从而导致内存占用不断增加,最终... 目录引言1. 什么是内存泄漏?常见的内存泄漏情况2. 如何排查 Java 中的内存泄漏?2.1 使用 J

JAVA系统中Spring Boot应用程序的配置文件application.yml使用详解

《JAVA系统中SpringBoot应用程序的配置文件application.yml使用详解》:本文主要介绍JAVA系统中SpringBoot应用程序的配置文件application.yml的... 目录文件路径文件内容解释1. Server 配置2. Spring 配置3. Logging 配置4. Ma

Java 字符数组转字符串的常用方法

《Java字符数组转字符串的常用方法》文章总结了在Java中将字符数组转换为字符串的几种常用方法,包括使用String构造函数、String.valueOf()方法、StringBuilder以及A... 目录1. 使用String构造函数1.1 基本转换方法1.2 注意事项2. 使用String.valu

java脚本使用不同版本jdk的说明介绍

《java脚本使用不同版本jdk的说明介绍》本文介绍了在Java中执行JavaScript脚本的几种方式,包括使用ScriptEngine、Nashorn和GraalVM,ScriptEngine适用... 目录Java脚本使用不同版本jdk的说明1.使用ScriptEngine执行javascript2.

Spring MVC如何设置响应

《SpringMVC如何设置响应》本文介绍了如何在Spring框架中设置响应,并通过不同的注解返回静态页面、HTML片段和JSON数据,此外,还讲解了如何设置响应的状态码和Header... 目录1. 返回静态页面1.1 Spring 默认扫描路径1.2 @RestController2. 返回 html2

Spring常见错误之Web嵌套对象校验失效解决办法

《Spring常见错误之Web嵌套对象校验失效解决办法》:本文主要介绍Spring常见错误之Web嵌套对象校验失效解决的相关资料,通过在Phone对象上添加@Valid注解,问题得以解决,需要的朋... 目录问题复现案例解析问题修正总结  问题复现当开发一个学籍管理系统时,我们会提供了一个 API 接口去

Java操作ElasticSearch的实例详解

《Java操作ElasticSearch的实例详解》Elasticsearch是一个分布式的搜索和分析引擎,广泛用于全文搜索、日志分析等场景,本文将介绍如何在Java应用中使用Elastics... 目录简介环境准备1. 安装 Elasticsearch2. 添加依赖连接 Elasticsearch1. 创

Spring核心思想之浅谈IoC容器与依赖倒置(DI)

《Spring核心思想之浅谈IoC容器与依赖倒置(DI)》文章介绍了Spring的IoC和DI机制,以及MyBatis的动态代理,通过注解和反射,Spring能够自动管理对象的创建和依赖注入,而MyB... 目录一、控制反转 IoC二、依赖倒置 DI1. 详细概念2. Spring 中 DI 的实现原理三、

SpringBoot 整合 Grizzly的过程

《SpringBoot整合Grizzly的过程》Grizzly是一个高性能的、异步的、非阻塞的HTTP服务器框架,它可以与SpringBoot一起提供比传统的Tomcat或Jet... 目录为什么选择 Grizzly?Spring Boot + Grizzly 整合的优势添加依赖自定义 Grizzly 作为